The residuation model for the ordinal construction of dissimilarities and other valued objects

  • Bruno Leclerc
Part of the Lecture Notes in Statistics book series (LNS, volume 93)


The aim of this chapter is to present an ordinal model of valued objects, special cases of which appear in many contexts. The model lies on basic notions of ordered set theory: residuation or, equivalently, Galois connections; it is not new: explicitly proposed in fuzzy set theory by Achache (1982, 1988), it also underlies an order formalization of a Jardine and Sibson (1971) model given by Janowitz (1978; see also Barthélemy, Leclerc and Monjardet 1984a). Here, our main concern is to apply the model in order to obtain and study dissimilarities such as ultrametrics, Robinson or tree-compatible ones. Valued objects of other types, already considered in the literature, will be also given as examples: two types of valued non symmetric relations and two types of valued convex subsets. The chapter is neither a theoretical general presentation nor a detailed study of a few special cases. It is, tentatively, something between these extreme points of view. Some references are given to the reader interested to more details on a specific class of valued objects, or to more information about residuation (or Galois mappings) theory. In what follows, E will be a given finite set with n elements. Several families of combinatorial objects defined on E will be considered.


Fuzzy Number Binary Relation Distributive Lattice Closure Operator Complete Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achache, A. (1982), Galois connection of a fuzzy subset, Fuzzy Sets and Systems, 8, pp. 215–218.MATHCrossRefMathSciNetGoogle Scholar
  2. Achache, A. (1988), How to fuzzify a closure space, J. Math.l Anal. Appl., 130, pp. 538–544.MATHCrossRefMathSciNetGoogle Scholar
  3. Barbut, M., Monjardet, B. (1971), Ordre et Classification, Algébre et Combinatoire, Hachette, Paris.Google Scholar
  4. Barthélemy, J.P., Leclerc, B., Monjardet, B. (1984a), Ensembles ordonnés et taxonomie mathématique, In Pouzet, M., Richard, M., eds., Orders, descriptions and roles, Annals of Discrete Mathematics, 23, North-Holland, Amsterdam, pp. 523–548.Google Scholar
  5. Barthélemy, J.P., Leclerc, B., Monjardet, B. (1984b), Quelques aspects du consensus en classification, in Diday, E., et al., eds., Data Analysis and Informatics III, North- Holland, Amsterdam, pp. 307–316.Google Scholar
  6. Barthélemy, J.P., Leclerc, B., Monjardet, B. (1986), On the use of ordered sets in problems of comparison and consensus of classifications, J. of Classification, 3, pp. 187–224.MATHCrossRefGoogle Scholar
  7. Batbedat, A. (1989), Les dissimilarités médas ou arbas, Statist. Anal. Données, 14, pp. 1–18.MathSciNetGoogle Scholar
  8. Batbedat, A. (1990), Les approches pyramidales dans la classification arborée, Masson, Paris.Google Scholar
  9. Bertrand, P., Diday, E. (1985), A visual representation of the compatibility between an order and a dissimilarity index: the pyramids, Comput. Statist. Quart., 2, pp. 31–44.MATHGoogle Scholar
  10. Birkhoff, G. (1967), Lattice Theory( 3rd ed. ), Amer. Math. Soc., Providence.MATHGoogle Scholar
  11. Blyth, T.S., Janowitz, M.F. (1972), Residuation Theory, Pergamon Press, Oxford.MATHGoogle Scholar
  12. Boorman, S.A., Olivier, D.C. (1973), Metrics on spaces of finite trees, J. Math. Psychol, 10, pp. 26–59.MATHCrossRefMathSciNetGoogle Scholar
  13. Brito, P. (1994), Symbolic objects: order structure and pyramidal clustering, IEEE Trans. Knowl. and Data Engin to appear.Google Scholar
  14. Critchley, F., Van Cutsem, B. (1994a), An order-theoretic unification and generalisation of certain fundamental bijections in mathematical classification - I, In Van Cutsem, B., ed., Classification and Dissimilarity Analysis, Ch. 4, Lecture Notes in Statistics, Springer-Verlag, New York.Google Scholar
  15. Critchley, F., Van Cutsem, B. (1994b), An order-theoretic unification and generalisation of certain fundamental bijections in mathematical classification — II, In Van Cutsem, B., ed., Classification and Dissimilarity Analysis, Ch. 5, Lecture Notes in Statistics, Springer-Verlag, New York.Google Scholar
  16. Croisot, R. (1956), Applications residuees, Ann. Sci. Ecole Norm. Sup. Paris, 73, pp. 453–474MATHMathSciNetGoogle Scholar
  17. Daniel-Vatonne, M.C., and de La Higuera, C. (1993), Les termes: un modele de représentation et structuration de données symboliques, Math. Inform. Sci. Humaines, 122, pp. 41–63.MATHGoogle Scholar
  18. Defays, D. (1978), Analyse hierarchique des préférences et généralisations de la transitivité, Math. Sci. Humaines, 61, pp. 5–27.MATHMathSciNetGoogle Scholar
  19. Degenne, A., and Vergés, P. (1973), Introduction à l’analyse de similitude, Revue Fran- gaise de Sociologie, XTV, pp. 471–512.Google Scholar
  20. Diday, E. (1986), Une représentation visuelle des classes empiétantes: les pyramides, RAIRO Automat-Prod. Inform. Ind., 20, pp. 475–526.MATHMathSciNetGoogle Scholar
  21. Diday, E. (1988), The symbolic approach in clustering and related methods of data analysis: the basic choices, In Bock, H.H., ed., Classification and Related Methods of Data Analysis, Amsterdam, North-Holland, pp. 673–683.Google Scholar
  22. Doignon, J.-P., Monjardet, B., Roubens, M., Vincke, Ph. (1986), Biorder families, valued relations and preference modelling, J. Math. Psych.30, pp. 435–480.MATHCrossRefMathSciNetGoogle Scholar
  23. Dubois,D., Prade, H. (1980), Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York.MATHGoogle Scholar
  24. Dubreil,P., Croisot, R. (1954), Propriétés generates de la résiduation en liaison avec les correspondances de Galois, Collect. Math., 7, pp. 193–203.MATHMathSciNetGoogle Scholar
  25. Duquenne, V. (1987), Contextual implications between attributes and some representation properties for finite lattices, In Ganter, B., Wille, R., Wolf, K.E., ed., Beitrage zur Begriffsanalyse, Wissenchaftverlag, Mannheim, pp. 213–240.Google Scholar
  26. Durand,C., Fichet, B. (1988), One-to-one correspondences in pyramidal representation: a unified approach, In Bock, H.H., ed., Classification and Related Methods of Data Analysis, North-Holland, Amsterdam, pp. 85–90.Google Scholar
  27. Ganter, B., Rindfrey, K., Skorsky, M. (1986), Software for concept analysis, In Gaul, W., Schader, M., eds., Classification as a Tool of Research, North-Holland, Amsterdam, pp. 161–168Google Scholar
  28. Gentilhomme, Y. (1968), Les ensembles flous en linguistique, Cahiers de Linguistique Théorique et Appliquée, 5, pp. 47–65.Google Scholar
  29. Golumbic, M.C. (1980), Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York.MATHGoogle Scholar
  30. Gondran, M. (1976), La structure algébrique des classifications hierarchiques, Ann. INSEE, 22-23, pp. 181–190.MathSciNetGoogle Scholar
  31. Gower, J.C., Ross, G.J.S. (1969), Minimum spanning tree and single linkage analysis, Applied Statistics, 18, pp. 54–64.CrossRefMathSciNetGoogle Scholar
  32. Janowitz, M.F. (1978), An order theoretic model for cluster analysis, SIAM J. Appl. Math., 37, pp. 55–72.CrossRefMathSciNetGoogle Scholar
  33. Jardine, N., Sibson, R. (1971), Mathematical Taxonomy, Wiley, London.MATHGoogle Scholar
  34. Johnson, S.C. (1967), Hierarchical clustering schemes, Psychometrika, 32, pp. 241–254.CrossRefGoogle Scholar
  35. Kaufman, A. (1973), Introduction à la Théorie des Sous-ensembles Flous, Masson, Paris. Translation (1975): Introduction to the Theory of Fuzzy sets, Academic Press, New York.Google Scholar
  36. Leclerc, B. (1979), Semi-modularité des treillis d’ultramétriques, C.R. Acad. Sci. Paris Ser. A, 288, pp. 575–577.MATHMathSciNetGoogle Scholar
  37. Leclerc, B. (1981), Description combinatoire des ultrametriques, Math. Sci. Humaines, 73, pp. 5–31.MathSciNetGoogle Scholar
  38. Leclerc, B. (1984a), Efficient and binary consensus functions on transitively valued relations, Math. Social Sci., 8, pp. 45–61.MATHCrossRefMathSciNetGoogle Scholar
  39. Leclerc, B. (1984b), Indices compatibles avec une structure de treillis et fermeture résiduelle, Rapport C.M.S. P.011, Centre d’Analyse et de Mathematiques Sociales, Paris, France.Google Scholar
  40. Leclerc, B. (1990), The residuation model for ordinal construction of dissimilarities and other valued objects, Rapport C.M.S. P.063, Centre d’Analyse et de Mathématiques Sociales, Paris, France.Google Scholar
  41. Leclerc, B. (1991), Aggregation of fuzzy preferences: a theoretic Arrow-like approach, Fuzzy Sets and Systems, 43, pp. 291–309.MATHCrossRefMathSciNetGoogle Scholar
  42. Monjardet, B. (1988), A generalization of probabilistic consistency: linearity conditions for valued preference relations, In Kacprzyk, J., Roubens, M., eds., Non- Conventional Preference Relations in Decision Making, Lecture Notes in Econom. and Math. Syst., 301, Springer-Verlag, Berlin, pp. 36–53.Google Scholar
  43. Monjardet, B. (1990), Arrowian characterization of latticial federation consensus functions, Math. Soc. Sci., 20, pp. 51–71.MATHCrossRefMathSciNetGoogle Scholar
  44. Negoita, C.V. (1981), Fuzzy systems, Abacus Press, Tunbridge Wells.MATHGoogle Scholar
  45. Öre, O. (1944), Galois connections, Trans. Amer. Math. Soc., 55, pp. 494–513.Google Scholar
  46. Polat, N., Flament, C. (1980), Applications galoisiennes proches d’une application entre treillis, Math. Sci. Humaines, 70, pp. 33–49.MATHMathSciNetGoogle Scholar
  47. Roubens, M. (1986), Comparison of flat fuzzy numbers, In Bandler, N., Kandel, A., eds., Proceedings of NAFIPS’86, pp. 462–476.Google Scholar
  48. Roubens, M., Vincke, Ph. (1988), Fuzzy possibility graphs and their application to ranking fuzzy numbers, In Kacprzyk, J., Roubens, M., eds., Non-conventional Preference Relations in Decision Making, Springer-Verlag, Berlin, pp. 119–128.Google Scholar
  49. Roux, M. (1968), Un algorithme pour construire une hiérarchie particulière, Thèse de 3eme cycle, Université Paris VI, France.Google Scholar
  50. Shmuely, Z. (1974), The structure of Galois connections, Pacific J. of Math., 54, pp. 209–225.MATHMathSciNetGoogle Scholar
  51. Voile, M. (1985), Conjugaison par tranches, Ann. Mat. Pura Appl., 139, pp. 279–312.CrossRefMathSciNetGoogle Scholar
  52. Wille, R. (1982), Restructuring lattice theory: an approach based on hierarchies of concepts, In Rival, I., Reidel, D., eds., Ordered Sets, Dordrecht, pp. 445–470.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Bruno Leclerc
    • 1
  1. 1.Centre d’Analyse et de Mathématiques SocialesEcole des Hautes Etudes en Sciences SocialesParisFrance

Personalised recommendations