Advertisement

Glufosinate (Phosphinothricin), A Natural Amino Acid with Unexpected Herbicidal Properties

  • Gerhard Hoerlein
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 138)

Abstract

In addition to the large number of phosphates formed under natural conditions, such as the nucleotides and phospholipids, the world of living organisms also presents a small group of phosphonic acids, the structure of which was first brought to light during the last 20 years or so. One of the first compounds from this series was 1,2-epoxipropanephosphonic acid, which was isolated from protozoa in 1969 and is known by the trivial name fosfomycin (1) (Christensen et al. 1969; Hendlin et al. 1969). Other examples are plumbemycin (2) (Park et al. 1977), isolated in 1976 from cultured filtrates of Streptomyces plumbeus, and fosmidomycin (3) (Kuroda et al. 1980), isolated from Streptomyces lavendulae. All three of these have an antibiotic effect (Fig. 1). Natural substances containing a phosphinic acid moiety in which the phosphorus atom is bound to two carbon atoms were unknown 20 years ago.

Keywords

Glutamine Synthetase Weed Control Phosphonic Acid Minimum Tillage Phosphinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acaster MA, Weitzmann PDJ (1985) Kinetic analysis of glutamine synthetases from various plants. FEBS Lett 189:241–244.CrossRefGoogle Scholar
  2. Afzali-Ardakani A, Rapoport H (1980) L-Vinylglycine. J Org Chem 45:4817–4820.CrossRefGoogle Scholar
  3. Arvidsson T (1986) New herbicides in potato. Rept 27th Swed Weed Conf 1:257–272.Google Scholar
  4. Bahat A (1985) Glufosinate ammonium for general weed control in vineyards, citrus, and other fruit orchards and uncultivated areas. Phytoparasitica 13:239.Google Scholar
  5. Baillie AC, Wright BJ, Wright K, Earnshaw CG (1981) Derivatives of 4-(methylphosphinyl)-2-oxobutanoic acid, herbicidal composition containing them and their intermediates. Eur Pat Appl EP 30 424 Fisons Ltd; Chem Abstr 1981, 95, P 204152x.Google Scholar
  6. Baldwin JE, Haber SH, Hoskens C, Kruse LK (1977) Synthesis of β,γ-unsaturated amino acids. J Org Chem 42:1239–1241.PubMedCrossRefGoogle Scholar
  7. Balthazor TM, Flores RA (1980) Dipolar cycloadditions of an acetylenic phosphinate. J Org Chem 45:529–531.CrossRefGoogle Scholar
  8. Bartsch K, Dichmann R, Schmitt P, Uhlmann E, Schulz A (1990) Stereospecific production of the herbicide phosphinothricin by transamination: Cloning, characterization, and overexpression of the gene encoding a phosphinothricin-specific transaminase from Escherichia coli. Appl Environ Microbiol 56:7–12.PubMedGoogle Scholar
  9. Bayer E, Gugel KH, Haegele K, Hagenmaier H, Jessipow S, Koenig WA, Zaehner H (1972) Phosphinothricin und phosphinothricyl-alanyl-alanin. Helv Chim Acta 55:224–239.PubMedCrossRefGoogle Scholar
  10. Beckerson DW, Townsend D, Hay G (1985) Potato top-growth desiccation using glufosinate ammonium. Res Rept Expert Comm Weeds East Can Annu 30: 412.Google Scholar
  11. Bellinder RR, Chabot JF (1986) Scanning electron microscopy of leaf surfaces treated with glufosinate ammonium. Weed Sei Soc Am 26:104–105.Google Scholar
  12. Bier B, Langelueddeke P, Schumacher H (1988) Unkrautbekaempfung in Kartoffeln—ein neues Einsatzgebiet fuer Basta®. Mitteilung Biol Bundesanstalt Land-, Forstwirtschaft Nr. 245:245–246.Google Scholar
  13. Block HD (1976a) Phosphorus-containing aldehydes. Germ Offen DE 2 516 341 Bayer AG; Chem Abstr 1977, 86, 55580v.Google Scholar
  14. Block HD (1976b) Phosphorus-containing aldehydes diaeylates. Germ Offen DE 2 516 343 Bayer AG; Chem Abstr 1977, 86, 55581w.Google Scholar
  15. Block HD (1982) Phosphorigsaeure-chlorid-dimethylester. In: Regitz M (ed), Houben-Weyl Methoden der organ Chemie. Thieme, Stuttgart. Vol E1: 375.Google Scholar
  16. Blumenfeld T, Kleifeld Y, Bucsbaum H, Funk AS (1988) Weed control in cotton planted directly into the stubble of wheat or legumes. Phytoparasitica 16:398.Google Scholar
  17. Boeshar M, Erpenbach H, Jaegers E, Kleiner HJ, Koll HP (1990) Verfahren zur Herstellung von N-Acyl-phosphinothricindiestern. Eur Pat Appl EP 350 694 Hoechst AG; Chem Abstr 1990 113:41329j.Google Scholar
  18. Botterman J (1989) Advances in engineering herbicide resistance in plants. Brit Crop Prot Conf Weeds 979–985.Google Scholar
  19. Botterman J, Leemans J (1989) Discovery, transfer to crops, expression and biological significance of a bilaphos resistance gene. Brit Crop Prot Conf Weeds Mo- nogr 42:63–68.Google Scholar
  20. Botterman J, D’Halluin K, De Greef W, Leemans J (1991) Engineering of glufosinate resistance and evaluation under field conditions. Long Ashton Int Symp Meet 11: 355–363.Google Scholar
  21. Bucsbaum H, Horowith M, Kleifeld Y, Herzlinger G, Bargutti, A (1985) Experi-ments on the control of phragmites in drainage canals. Phytoparasitica 13:249–250.Google Scholar
  22. Buebl W, Koecher H, Langelueddeke P (1990) Versuche zur Vertraeglichkeit von Basta® in Sonderkulturen. Z Pflanzenkrankh Pflanzenschutz Sonderheft 12:537–547.Google Scholar
  23. Caldwell CD (1983) Effect of glufosinate ammonium as a desiccant for Tobin rapeseed. Effect of glufosinate ammonium as a desiccant for Altex. Res Rept Expert Comm Weeds West Can 1:263.Google Scholar
  24. Christensen BG, Leanza JW, Beattie TR, Patchett AA, Arison BH, Ormond RF, Kuehl FA, Albers-Shongerg G, Jardetzky O (1969) Phosphonomycin: Structure and synthesis. Science 166:123.Google Scholar
  25. Coffee Research Foundation Kenya Coffee (1990) Weed control in coffee. 55:837–840.Google Scholar
  26. De Block M, Botterman J, Vandewiele M, Dockx T, Thoen C, Gossel V, Mowa NR, Thompson C, Van Montagu M, Leemanns J, (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518.PubMedGoogle Scholar
  27. De Greef W, Delon R, De Block M, Leemans J, Botterman J (1989) Evaluation of herbicide resistance in transgenic crops under field conditions. Biotechnology 7: 61–64.CrossRefGoogle Scholar
  28. Delmonte Research and Hoechst Philippines (1989) Evaluation of Basta® 20 SL, Roundup® 36 EC, Gramoxone® 24 EC and Gramoxone®/Karmex® for weed control in established banana plantation (unpublished).Google Scholar
  29. Devine MD, Holm FA, Clayton RE (1989) Efficacy of various desiccants on flax. Res Rept Expert Comm Weeds West Can 2:823–824.Google Scholar
  30. Donn G (1982) Der Einfluss von Klimafaktoren auf die herbizide Wirkung von Glufosinat ammonium. Med Fac Landbouw Rijsuniv Gent 47:105–110.Google Scholar
  31. Donn G, Tischer E, Smith J, Goodman H (1984) Herbicide-resistant alfalfa cells: An example of gene amplification in plants. J Mol Appl Genet 2:621–635.PubMedGoogle Scholar
  32. Donn G, Dirks R, Eckes P, Uijtewaal B (1990a) Transfer and expression of modified phosphinothricin-acetyltransferase gene from Streptomyces viridichromogenes in tomato, melon, carrot, and strawberry. Abstr VII Int Congr Plant Tissue Cell Cult Amsterdam: 176.Google Scholar
  33. Donn G, Nilges M, Morocz S (1990b) Stable transformation of maize with a chimaeric, modified phosphinothricin-acetyltransferase gene from Streptomyces viridochromogenes. Abstr VII Int Congr Plant Tissue Cell Cult Amsterdam: 53.Google Scholar
  34. Donn G, Eckes P (1992) Basta®—vertraegliche Kulturpflanzen durch Uebertragung eines synthetischen Phosphinothricin-Acetyltransferase-Gens. Z Pflanzenkrankh Pflanzenschutz, Sonderheft 13:499–504.Google Scholar
  35. Dorn E, Goerlitz G, Heusei R, Stumpf K (1992) Verhalten von Glufosinat-ammonium in der Umwelt—Abbau und Einfluss auf das Oekosystem. Z Pflanzenkrankh Pflanzenschutz, Sonderheft 13:459–468.Google Scholar
  36. Ebert E, Leist KH, Mayer D (1990) Summary of safety evaluation toxicity studies of glufosinate ammonium. Food Chem Toxicol 28:339–349.PubMedCrossRefGoogle Scholar
  37. Eckes P, Donn G, Wengenmayer F (1987) Genetic engineering with plants. Ang Chem Int Ed Engl 26:382–402.CrossRefGoogle Scholar
  38. Eckes P, Schmitt P, Daub W, Wengenmayer F (1989a) Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol Gen Genet 217:263–268; Chem Abstr 1989, 111, 72466q.CrossRefGoogle Scholar
  39. Eckes P, Uijtewaal B, Donn G (1989b) Synthetic gene confers resistance against the broad spectrum herbicide L-phosphinothricin in plants. J Cell Biochem 13D:334.Google Scholar
  40. Entz PJ, Mazinke M, Wright EB (1989) To evaluate the efficacy of glufosinate ammonium in the desiccation of sunflowers. Res Rept Expert Comm Weeds West Can 2:825.Google Scholar
  41. FAO/WHO (1991) Pesticide residues in food, Toxicology evaluation. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. JMPR 209–239. World Health Organization of the United Nations, Geneva, 1992.Google Scholar
  42. Finke M, Muendnich R (1980) Phosphorus-containing cyanohydrinderivatives. Germ Offen DE 2 849 003 Hoechst AG; Chem Abstr 1981, 94, 121709n.Google Scholar
  43. Fischer HP (1990) Naturstoffsynthesen im Pflanzenschutz. Nachr Chem Techn Lab 38:732–740.Google Scholar
  44. Foster KR, O’Sullivan PA (1984) Efficacy of glufosinate ammonium as a desiccant for Tobin and Candle. Res Rept Expert Comm Weeds West Can 1:317–318.Google Scholar
  45. Gonzalez-Moro MB, Lacuesta M, Munoz-Rueda A, Becerril-Soto JM, Gonzalez-Murua C (1990) Effect of phosphinothricin on nitrogen metabolism in Zea mays. Plant Physiol 93(1) Suppl: 151.Google Scholar
  46. Grabley S, Sauber K (1982) Verfahren zur enzymatischen Herstellung von L-2- Amino-4-methylphosphinobuttersaeure. Germ Offen DE 3 048 612 Hoechst AG; Chem Abstr 1982, 97, 125725z.Google Scholar
  47. Gross H, Gnauk Th (1976) Eine einfache Synthese fuer D,L-Phosphinothricin. J Prakt Chem 318:157–160.CrossRefGoogle Scholar
  48. Gruszecka E, Mastalerz P, Soroka M (1975) New synthesis of phosphinothricin and analogs. Rocz Chemii 49:2127–2128; Chem Abstr 1976, 85, 5777y.Google Scholar
  49. Gruszecka E, Soroka M, Mastalerz P (1979a) Phosphonic analogs of α-methylaspartic- and α-methylglutamic acids. Pol J Chem 53:2327–2331; Chem Abstr 1980, 93, 8479d.Google Scholar
  50. Gruszecka E, Soroka M, Mastalerz P (1979b) Preparation of A ¿-phosphinothricin by Strecker reaction. Pol J Chem 53:937–939; Chem Abstr 1979, 91, 141198m.Google Scholar
  51. Gruszecka E, Masterlerz P, Soroka M. (1980) 2-Amino-4-(methylphosphinyl)butyric acid. Pol 105 240 (1980); Chem Abstr 1981, 95, 98025w.Google Scholar
  52. Hanessian St, Sahoo SP (1984) A novel and efficient synthesis of L-vinylglycine. Tetrahedron Lett 25:1425–1428.CrossRefGoogle Scholar
  53. Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, Miller TW, Chaiet L, Kahan FM, Foltz EL, Woodruff HB, Mata JM, Hernandez S, Mochales S (1969) Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166:122.PubMedCrossRefGoogle Scholar
  54. Henninger CC, Keeling JW, Abernathy JR (1989) Horseweed Conyza canadensis. Control in conservation tillage systems. Abstr Meet Weed Sei Soc Am 29:12–13.Google Scholar
  55. Herold A, Wendler C, Wild A (1990) The effect of phosphinothricin on glutathione synthesis in plants. Botanica Acta 103:68–71.Google Scholar
  56. Hess D (1992) Biotechnologie der Pflanzen, First Ed. Eugen Ulmer, Stuttgart, pp 256–258.Google Scholar
  57. Hidaka T, Imai S, Hara O, Anzai H, Murakami T, Nagaoka K, Seto H (1990) Carboxyphosphonoenolpyruvate phosphonomutase, a novel enzyme catalyzing C-P bond formation. J Bacteriol 172:3066–3072.PubMedGoogle Scholar
  58. Hirose K (1988) Weed control in citrus growes. Jpn Pestic Inf 52:3–5.Google Scholar
  59. Hoechst AG (1990) Basta® and Dropp®: Partners for cotton defoliation and reduced regrowth. (unpublished).Google Scholar
  60. Hoechst Canada Inc Agriculture Div (1993) Glufosinate Ammonium Tolerant Canola, Hoechst Canada, Regina, Saskatchewan, pp 4–6.Google Scholar
  61. Hoechst Celanese Corp (1988) EUP-trials in non-crop conditions, no-till seed bed trials, postdirected trials (unpublished).Google Scholar
  62. Hoechst Columbiana SA (1988) Basta® against various weeds in different crops under different conditions (unpublished).Google Scholar
  63. Hoechst Ecuador SA (1985) Basta® for weed control in banana plantations in a long-term trial (unpublished). Google Scholar
  64. Hoechst Japan Ltd (1987) Control of Oenanthe javanica with Basta® prior to plowing (unpublished).Google Scholar
  65. Hoechst Pakistan Ltd (1990) To test the efficacy of Basta® 20 SL with the comparison of Stomp® in cotton crop, when sprayed at postemergence stage (unpublished).Google Scholar
  66. Hoechst Roussel USA (1989) Ignite® (GLA) in combination with Dropp® for cotton harvest aid (unpublished).Google Scholar
  67. Hoechst Roussel USA (1990) Ignite® (GLA) cotton defoliation (unpublished).Google Scholar
  68. Hoechst Taiwan (1987) Trial report of Basta® 20% SL against weeds on paddy dike (unpublished).Google Scholar
  69. Hoepfer M, Reifferscheid G, Wild A (1988) Molecular composition of glutamine synthetase of Sinapis alba. Z Naturforsch 43c: 194–198.Google Scholar
  70. Hoffmann MG, Zeiss HJ (1992) A novel and convenient route to L-homoserinlactones and L-phosphinothricin from L-aspartic acid. Tetrahedron Lett 33:2669–2672.CrossRefGoogle Scholar
  71. Hunter JH (1988) Desiccation of flax with glufosinate ammonium. Res Rept North Cent Weed Control Conf 45:119.Google Scholar
  72. IFRA/Roussel French Antilles (1987a) Basta® for weed control in banana plantations (unpublished).Google Scholar
  73. IFRA/Roussel French Antilles (1987b) Weed control with Basta® in bananas (unpublished).Google Scholar
  74. Imai S, Seto H, Sasaki T, Tsuruoka T, Ogawa H, Satoh A, Inouye S, Niida T, Otaka N (1984) Studies of the biosynthesis of bialaphos. J Antibiot 37:1505–1508.PubMedGoogle Scholar
  75. Imai S, Tsuruoka T, Ogawa H, Sato A, Seto H, Otake N (1986) Biosynthesis of bialaphos, a herbicide produced by microorganism. Abstr Sixth Int Congr of Pestic Chem Ottawa: 2F–08.Google Scholar
  76. Imai S, Takane N, Yoshizawa Y, Saito T, Ogawa H, Takabe H, Sato A, Fukatsu S, Okada A, Murakami T, Hara O, Miyado S, Kumada Y, Anzai H, Nagaoka K (1987) Microbiological process for the production of L-2-amino-4-(hydroxyl-methylphosphinyl)butyric acid, a herbicide. Eur Pat Appl EP 249 188 Meiji SeikaKaisha; Chem Abstr 1988,108,130083p.Google Scholar
  77. Jaegers E, Boehshar M, Kleiner HJ, Erpenbach H, Bylsma F (1990) Verfahren zur Herstellung von N-Acyl-phosphinothricin-P-ester. Eur Pat Appl EP 350 630 Hoechst AG; Chem Abstr 1990,113, 41328h.Google Scholar
  78. Kehne H (1987) Preparation of herbicides phosphinothricin derivatives. Germ Offen DE 3 544 373 (1987) Hoechst AG; Chem Abstr 1987, 107, 78087f.Google Scholar
  79. Kehne H, Bauer K, Bieringer H (1987a) Preparation of phosphinothricin-containing dipeptides as herbicides. Germ Of fen DE 3 544 376 Hoechst AG; Chem Abstr 1987, 107, 97139r.Google Scholar
  80. Kehne H, Mildenberger H, Bauer K, Bieringer H (1987b) Phosphinothricin- containing di- and tripeptides as herbicides. Germ Of fen DE 3 544 375 Hoechst AG; Chem Abstr 1987, 107, 97140j.Google Scholar
  81. Kishi J, Matsumoto H, Ishizuka K (1991) Effect of glufosinate on plant seedlings growth with different nitrogen sources. Weed Res (Tokyo) 36:274–281.Google Scholar
  82. Koecher H, Bauer K, Donn G, Bieringer H (1981) Synergistische Kombinationen von Phosphinothricin. Eur Pat Appl 36106 Hoechst AG; Chem Abstr 1982, 96, 2163m.Google Scholar
  83. Koecher H (1983) Influence of the light factor on physiological effects of the herbicide phosphinothricin ammonium. Aspects Appl Biol 4:227–234.Google Scholar
  84. Koecher H, Loetzsch K (1985) Uptake, translocation and mode of action of the herbicide glufosinate ammonium in warm climate weed species. Proc Asian-Pac Weed Sci Soc 10:193–198.Google Scholar
  85. Koecher H (1989) Inhibitors of glutamine synthetase and their effects in plants. Proc Soc Chem Ind, Pestic Group Meet, Monogr 42:173–182.Google Scholar
  86. Kondo Y, Shomura T, Ogawa Y, Tsuruoka T, Watanabe H, Totsukawa K, Suzuki T, Moriya C, Yoshida J (1973) Isolation and physicochemical and biological characterization of SF-1293 substance. Sci Rept of Meiji Seika Kaisha 13:34–41; Chem Abstr 1974, 81, 89705b.Google Scholar
  87. Krieg LC, Walker MA, Senaratna T, Mc Kersie BD (1990) Effects of phosphine-thricin on growth, ammonia accumulation and glutamine synthetase activity in Alfalfa shoot tissue and cell cultures. Plant Cell Rept 9:80–83; Chem Abstr 1990, 113, 16731 lr.0Google Scholar
  88. Kuah TC, Langelueddeke P, Purusotman R (1989) Crop tolerance of oilpalm to long-term usage of glufosinate ammonium. Proc Asian-Pac Weed Sci Soc 12: 495–501.Google Scholar
  89. Kuroda Y, Okuhara M, Goto T, Okamoto M, Terano H, Kohsaka M, Aoki H, Imanaka H (1980) Studies on new phosphonic acid antibiotics. J Antibiot 33:29–35.PubMedGoogle Scholar
  90. Lacuesta M, Gonzalez-Moro B, Gonzalez-Murua C, Aparicio-Tejo P, Munoz-Rueda A (1989) Effect of phosphinothricin on activities of glutamine synthetase and glutamate dehydrogenase in Medicago sativa. J Plant Physiol 134:304–307.Google Scholar
  91. Lacuesta M, Diaz A, Gonzalez-Murua C, Munoz-Rueda A (1991) Effect of glufosinate in photosynthetic electron transport. Plant Physiol 96(1) Suppl: 165.Google Scholar
  92. Lacuesta M, Gonzalez-Moro B, Gonzalez-Murua C, Munoz-Rueda A (1990a) Temporal study of the effect of phosphinothricin on the activity of glutamine synthetase, glutamate dehydrogenase and nitrate reductase in Medicago sativa. J Plant Physiol 136:410–414.Google Scholar
  93. Lacuesta M, Gonzalez-Moro B, Gonzalez-Murua C, Munoz-Rueda A (1990b) Time course effect of phosphinothricin on photosynthesis in Medicago sativa. Plant Physiol 93(1) Suppl: 936.Google Scholar
  94. Lacuesta M, Munoz-Rueda A, Gonzalez-Murua C, Sivak M (1992) Effect of phosphinothricin on photosynthesis and chlorophyll fluorescence emission by barley leaves illuminated under photorespiratory and nonphotorespiratory conditions. J Exp Bot 43(247): 159–165.CrossRefGoogle Scholar
  95. Langelueddeke P, Reuss HU, Ceconi C, Manning TH, Roettele M (1982) Glufosinate ammonium, a new nonselective contact herbicide: Results of several years experimentation in orchards and vineyards from different european countries. Med Fac Landbouw Rijksuniv Gent 47:95–104.Google Scholar
  96. Langelueddeke P, Purosotman R, Sellehuddin M, Kassebeer H (1983) Glufosinate ammonium a new herbicide for Imperata cylindrica and for general weed control in tropical plantation crops. Proc Asian-Pac Weed Sei Soc 9:413–423.Google Scholar
  97. Langelueddeke P, Buebl W (1984) Glufosinate ammonium: Neue Ergebnisse zur Unkrautbekaempfung und Vertraeglichkeit im Weinbau. Z Pflanzenkrankh Pflanzenschutz, Sonderh 10:385–394.Google Scholar
  98. Langelueddeke P, Takagaki T, Arceo MB (1987) Use of Basta® for weed control in vegetables. Proc Asian-Pac Weed Sei Soc 11:63–71.Google Scholar
  99. Langelueddeke P, Bier B, Knobloch E, Nonnen H, Winkler J (1988) Einsatz von Basta® zur Unkrautbekaempfung in Gemuese. Z Pflanzenkrankh Pflanzenschutz, Sonderheft 11:455–461.Google Scholar
  100. Langelueddeke P, Bier B, Buebl W, Huff HP (1989a) Crop tolerance of glufosinate ammonium in grape vines and fruit trees. Proc Eur Weed Res Soc 89:144–150.Google Scholar
  101. Langelueddeke P, Kocur J, Strilchuk DR (1989b) Possibilities for improving the efficacy of glufosinate ammonium. Proc Asian-Pac Weed Sei Soc 12:503–510.Google Scholar
  102. Langelueddeke P, Roettele M, Bier B, Kocur J (1989c) Methods of improving the efficacy of glufosinate ammonium. Proc Brit Crop Prot Conf: 1033–1038.Google Scholar
  103. Leader J (1988a) Glufosinate ammonium: Home and garden applications. Res Rept Expert Comm Weeds East Can 2:614–615.Google Scholar
  104. Leader J (1988b) Glufosinate ammonium: Home and garden applications. Res Rept Expert Comm Weeds East Can 2:656–658.Google Scholar
  105. Leason M, Cunliffe D, Parkin D, Lea PJ, Miflin B (1982) Inhibition of pea leaf glutamine synthetase by methioninsulfoximine. Phosphinothricin and other glutamate analogs. J Phytochem 21:855–857.Google Scholar
  106. Leemans J, De Block M, D’Halluin K, Botterman J, De Greef W (1987) The use of glufosinate as a selective herbicide on genetically engineered resistant tobacco plants. Proc Brit Crop Prot Conf Weeds 867–870.Google Scholar
  107. Lichtenstein N, Ross HE, Cohen PP (1953) Effect of a-methylglutamic acid and the enzymatic synthesis and hydrolysis of glutamine. J Biol Chem 201:117–123.PubMedGoogle Scholar
  108. Logusch EW (1986) Facile synthesis of D, L-phosphinothricin from methyl-4-bromo-2-phthalimidobutyrate. Tetrahedron Lett 27:5935–5938.CrossRefGoogle Scholar
  109. Logusch E, Walker D, Mc Donald J, Franz J (1991) Inhibition of plant glutamine synthetases by substituted phosphinothricins. Plant Physiol 95:1057–1062.PubMedCrossRefGoogle Scholar
  110. Maier L (1970) Synthese und Eigenschaften von Polyphosphinaten und Polyphos- phinsaeuren. Helv Chim Acta 53:1944–1947.CrossRefGoogle Scholar
  111. Maier L, Lea PJ (1983) Synthesis and properties of phosphinothricin derivatives. Phosphorus and Sulfur 17:1–19.CrossRefGoogle Scholar
  112. Makowski EJ, Faust EW (1981) Glufosinate ammonium, a new nonselective post-emergence herbicide. Proc North Cent Weed Contr Conf 36:109.Google Scholar
  113. Manderscheid R, Wild A (1986) Studies on the mechanism of inhibition by phosphinothricin of glutamin synthetase isolatid from Triticum aestivum. J Plant Physiol 123:135–142.Google Scholar
  114. Mase S (1984) Meiji Herbiace (bialaphos). A new herbicide. Jpn Pestic Inf 45:27–30, Chem Abstr 1985, 102, 162113r.Google Scholar
  115. Mastalerz P (1959a) Synthesis of phosphonic acids related structurally to glutamic acid. Rocz Chemii 33:985–991; Chem Abstr 1960, 54, 6602.Google Scholar
  116. Mastalerz P (1959b) Inhibition of glutamine synthetase by phosphonic analogs of glutamic acid. Archiwum Immunologii I Terapii Doswiadczalnej 7:201–210; Chem Abstr 1960, 54, 6843.Google Scholar
  117. McDonald ID, Eadie A, Mc Cann T (1987) Glufosinate ammonium for weed control in plums. Res Rept Exp Comm Weeds East Can 1:391.Google Scholar
  118. Miflin BJ, Lea PJ (1980) Ammonia assimilation. In: Stumpf PK, Conn EE (eds) The Biochem of Plants. Academic Press, New York, London, Vol 5, p. 171.Google Scholar
  119. Mildenberger H, Tammer Th (1984) Phosphinothricin. Germ Offen DE3 312 165 Hoechst AG; Chem Abstr 1985, 102, 113.735m.Google Scholar
  120. Minowa N, Fukatu S, Niida T, Takada M, Sato K (1983) A practical synthesis of (+)-phosphinothricin. Tetrahedron Lett 24:2391–2392.CrossRefGoogle Scholar
  121. Minowa N, Hirayama M, Fukatsu S (1984) Asymmetric synthesis of (+)-phosphinothricin and (+)-2-amino-4-phosphonobutyric acid. Tetrahedron Lett 25:1147–1150.CrossRefGoogle Scholar
  122. Minowa N, Hirayama M, Fukatsu S (1987) Asymmetric synthesis of (+)-phosphin- othricin and related compounds by the Michael addition of glycin Schiff bases to vinylcompounds. Bull Chem Soc Jpn 60:1761–1766.CrossRefGoogle Scholar
  123. Morocz S, Donn G, Nemeth J, Dudits D (1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor Appl Genet 80:721–726.CrossRefGoogle Scholar
  124. Natchev IA (1988) Enzymatic synthesis of £>-, D, L-, and L-phosphinothricin and their cyclic analogs. Bull Chem Soc Jpn 61:3699–3704.CrossRefGoogle Scholar
  125. Natchev IA (1989) Total synthesis and enzyme-substrate interaction of D-, D, L-> and L-phosphinothricine, bialaphos and its cyclic analogs. J Chem Soc, Perkin Trans 1:125–131.CrossRefGoogle Scholar
  126. Negrutiu J, Shillito R, Potrykus J, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions. Plant Mol Biol 8:363–373.CrossRefGoogle Scholar
  127. Niida T, Inouye S, Tsuruoka T, Shomura T, Kondo Y, Ogawa Y, Watanabe H, Sekizawa Y, Watanabe T, Igarashi H (1973) Antibiotic SF-1293 from Streptomyces hygroscopicus. Germ Offen DE 2 236 599 Meiji Seika Kaisha; Chem Abstr 1973, 78, 109315t.Google Scholar
  128. Nir A, Raz A (1985) New herbicides for control of perennial weeds at roadsites and in drainage canals. Phytoparasitika 13:249.Google Scholar
  129. Oelck M, Phan C, Eckes P, Donn G, Rakow G, Keller W (1991) Field resistance of Canola transformants (Brassica napus) to Ignite® (glufosinate ammonium). GCIRC Congr Ottawa: 292–297.Google Scholar
  130. Ogawa Y, Tsuruoka T, Inouye S, Niida T (1973a) Chemical structure of antibiotic SF-1293. Sci Rept Meiji Seika Kaisha 13:42–48; Chem Abstr 1974, 81 37806r.Google Scholar
  131. Ogawa Y, Yoshida H, Inouye S, Niida T (1973b) Synthesis of a new phosphorus- containing amino acid, a component of antibiotic SF-1293. Sci Rept Meiji Seika Kaisha 13:49–53; Chem Abstr 1974, 81, 37788m.Google Scholar
  132. Omura S, Hinotozawa K, Imanura N, Murata M (1984a) The structure of phosa- lacine, a new herbicidal antibiotic containing phosphinothricin. J Antibiot 37: 939–940.PubMedGoogle Scholar
  133. Omura S, Murata M, Hanaki H, Hinotozawa K, Oiwa R, Tanaka H (1984b) Phosalacine, a new herbicidal antibiotic containing phosphinothricin. Fermentation, isolation, biological activity and mechanism of action. J Antibiot 37:829–835.PubMedGoogle Scholar
  134. O’Toole JJ, Horn J (1989) Desiccation of white beans. Res Rept Expert Comm Weeds East Can 1:332.Google Scholar
  135. Pace J, Me Dermott EE (1952) Methioninsulfoximine and some enzyme systems involving glutamine. Nature 169:415–416.PubMedCrossRefGoogle Scholar
  136. Pamplona PP (1983) Evaluation of glufosinate ammonium, glyphosate and paraquat against weeds infesting rubber and oilpalm. Proc Asian-Pac Weed Sci Soc 9:560–569.Google Scholar
  137. Park BK, Hirota A, Sakai H (1977) Structure of plumbemycin A and B, antagonists of L-threonin from Streptomycesplumbeus. Agric Biol Chem 41:573–579; Chem Abstr 1977, 86, 184779r.CrossRefGoogle Scholar
  138. Paulus EF, Grabley S (1982) Molecular and crystal structure of L-phosphinothricin. Z Kristallogr 160:63–68.CrossRefGoogle Scholar
  139. Perkins GR (1990) Basta®, a new herbicide for horticulture. Proc Aust Weed Conf Meet 9: 544–547.Google Scholar
  140. Pfefferkorn V (1991) Neue Moeglichkeiten der Unkrautbekaempfung im Mais. 8 Maiscoll in Halle: 36–39.Google Scholar
  141. Purosotman R, Goetz W, Langelueddeke P (1985) Basta®, a new nonselective herbicide for general weed control in plantations. Results of long-term trials in Malaysia. Proc Asian-Pac Weed Sci Soc 10:220–226.Google Scholar
  142. Purusotman R, Tseu CCT, Langelueddeke P (1988) Crop tolerance and mixed weed control in cocoa with Basta®. The Planter 64(745): 171.Google Scholar
  143. Ratnayake S, Shaw DR (1990) Influence of harvest aid herbicides on soybean and sicklepod seed quality. Proc South Weed Sci Soc 43:30.Google Scholar
  144. Ratnayake S, Shaw DR (1991a) Effects of harvest aid herbicides on soybean and sicklepod (Cassia ottusifolia). Seed quality. Abstr Meet Weed Sci Soc Am 31:8.Google Scholar
  145. Ratnayake S, Shaw DR (1991b) Effects of harvest aid herbicides on soybean and sicklepod seed quality. Proc South Weed Sci Soc 44:346.Google Scholar
  146. Ridley SM, McNally SF (1985) Effects of phosphinothricin on the isoenzymes of glutamine synthetase isolated from plant species which exhibit varying degrees of susceptibility to the herbicide. Plant Science 39:31–36; Chem Abstr 1985, 103, 100292k.CrossRefGoogle Scholar
  147. Rioux R, Dube Z, Genderau B (1989) Potato desiccation with Basta®. Res Rept Expert Comm Weeds East Can 1:447.Google Scholar
  148. Roettele M, Koetter U, Fischer G (1988) Mehrjaehrige Versuchsergebnisse zur Optimierung des Produktionsverfahrens von Mais durch Direktsaat. Z Pflanzenkrankh Pflanzenschutz, Sonderh 11:203–209.Google Scholar
  149. Rogacheva IA, Gefter EI (1971) Transformations of bis(j3-chlorethyl)methylphos-phonite. Zh Obshch Khim 41:2634–2635; Chem Abstr 1972, 76, 127093g.Google Scholar
  150. Rupp W, Finke M, Bieringer H, Langelueddeke P (1977) Herbicidal composition. Germ Offen DE 2 717 440, Hoechst AG; Chem Abstr 1978, 88, 70494e.Google Scholar
  151. Sadler RJ, Swanton C, Sebastian D (1989) Glufosinate ammonium for desiccation of white beans. Res Rept Expert Comm Weeds East Can 1:333.Google Scholar
  152. Sakakura T, Huang X, Tanaka M (1991) Hydroformylation-amidocarbonylation of methylvinylphosphinate. Application to synthesis of glufosinate. Bull Chem Soc Jpn 64:1707–1709.CrossRefGoogle Scholar
  153. Sauer H, Wild A, Ruehle W (1987) The effect of phosphinothricin on photosynthesis II. The causes of inhibition of photosynthesis. Z Naturforsch 42c:270–278.Google Scholar
  154. Schoellkopf U (1983) Asymmetric synthesis of amino acids via metalated bis-lactim ethers of 2,5-diketopiperazines. Pure Appl Chem 55:1799–1806.CrossRefGoogle Scholar
  155. Schulz A, Taggeselle P, Tripier D, Bartsch K (1990) Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination: Isolation and characterization of a phosphinothricin-specific transaminase from Escherichia coli. Appl Environ Microbiol 56:1–6.PubMedGoogle Scholar
  156. Schwerdtle F, Bieringer H, Finke M (1981) Glufosinate ammonium: ein neues nicht selectives Blattherbizid. Z Pflanzenkrankh Pflanzenschutz, Sonderheft 9:431–440.Google Scholar
  157. Seto H, Imai S, Tsuruoka T, Satoh A, Kojima M (1982) Studies of the biosynthesis of bialaphos. J Antibiot 35:1719–1721.PubMedGoogle Scholar
  158. Seto H, Imai S, Tsuruoka T, Ogawa H, Satoh A, Sasaki T, Otake N (1983) Production of phosphinic acid derivatives, MP-103, MP-104 and MP-105 by a blocked mutant of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Biochem Biophys Res Commun 111:1008–1014; Chem Abstr 1983, 99, 2825r.PubMedCrossRefGoogle Scholar
  159. Shelby PW, Haynes RM (1988) Preplant horseweed control for no-till cotton and soybeans. Proc South Weed Sei Soc 41:294.Google Scholar
  160. Shimotohno K, Seto H, Otake N, Imai S, Satoh A (1986) Studies of the biosynthesis of bialaphos. J Antibiot 39:1356–1358.PubMedGoogle Scholar
  161. Singh M, Tucker DPH (1987) Glufosinate ammonium (Ignite®): A new promising postemergence herbicide for citrus. Proc Florida State Hort Soc 100:58–61.Google Scholar
  162. Soroka M, Mastalerz P (1976) The synthesis of phosphonic and phosphinic analogs of aspartic acid and asparagine. Rocz Chemii 50:661–666; Chem Abstr 1977, 86, 5790t.Google Scholar
  163. Strauch E, Arnold W, Alijah R, Wohlleben W, Puehler A, Eckes P, Donn G, Uhlmann E, Hein F, Wengenmayer F (1988) Chemical synthesis and expression in plant cells and plants of phosphinothricin resistance gene with plant preferred codons. Eur Pat Appl EP 275 957 Hoechst AG; Chem Abstr 1989, 110, 34815z.Google Scholar
  164. Stuebler H (1988) Herbicidal systems for potato cultivation in West Germany under special consideration of glufosinate. Proc Weed Sei Soc Jpn, Suppl. 33:29–30.Google Scholar
  165. Suzuki A, Turuoka T, Mizuatam K, Inouye S (1981) New synthesis of 2-amino-4-hydroxy-4-(methylphosphinoyl)butyric acid and some analogs. Sei Rept Meiji Seika Kaisha 20:33–38; Chem Abstr 1982, 96, 103934u.Google Scholar
  166. Tachibana K, Watanabe T, Sekizawa Y, Takematsu T (1986) Inhibition of glutamine synthetase and quantitative changes of free amino acids in shoots of bialaphos treated Japanese barnyard millet. J Pest Science 11:27; Chem Abstr 1986, 105, 20446q.Google Scholar
  167. Takamatsu H, Muto H, Suzuki F (1989) Preparation of (oxopropyl)phosphinates as intermediates for herbicides. Jpn Kokai Tokky Koho JP 89 063584 Nissan Chem Ind Ltd; Chem Abstr 1989, 111, 195078x.Google Scholar
  168. Takematsu T, Konnai M, Tachibana K, Tsuruoka T, Inouye S, Watanabe T (1979a) Antibiotic SF-1293 as herbicide. Jpn Kokai Tokky Koho JP 79 067026 Meiji Seika Kaisha; Germ Offen DE 2 848 224, 1979; Chem Abstr 1979, 91, 85287a.Google Scholar
  169. Takematsu T, Konnai M, Tachibana K, Tsuruoka T, Inouye S, Watanabe T (1979b) Herbicide for controlling weeds and bushes. Germ Offen DE 2 856 260; Meiji Seika Kaisha; Chem Abstr 1979, 91, 103741a.Google Scholar
  170. Takigawa S, Araya S (1989) Preparation of phosphinylamino acid derivatives as intermediates for herbicides. Jpn Kokai Tokkyo Koho JP 89 249786 Nissan Chem Ind Ltd; Chem Abstr 1990, 112,158641a.Google Scholar
  171. Takigawa S, Araya S (1990) Preparation of aminophosphinylbutyric acid hydrochlorides as herbicides. Jpn Kokai Tokkyo Koho 90 184692 Nissan Chem Ind Ltd; Chem Abstr 1991, 114, 143708v.Google Scholar
  172. Takigawa S, Shinke S, Tanaka M (1990) Synthesis of glufosinate via amidocarbonylation. Chem Lett 8:1415.CrossRefGoogle Scholar
  173. Tanaka M, Sakakura T, Takigawa S (1989a) Preparation of organophosphinates as intermediates for herbicides. Jpn Kokai Tokkyo Koho JP 89 224382; Eur Pat Appl EP 336 558, 1989 Nissan Chem Ind Ltd; Chem Abstr 1990,112,139571m.Google Scholar
  174. Tanaka M, Sakakura T, Takigawa S, Araya S (1989b) Preparation of phosphinyl-2-oxobutyric acids as intermediates for herbicides. Jpn Kokai Tokkyo Koho JP 89 258692 Nissan Chem Ind Ltd; Chem Abstr 1990, 112, 179478t.Google Scholar
  175. Tanaka M, Sakakura T, Takigawa S, Araya S (1990) Preparation of alkyl(3-oxopropyl)phosphinic acids or their esters as intermediates for herbicidal glufosinate. Jpn Kokai Tokkyo Koho JP 90 212496 Nissan Chem Ind Ltd; Chem Abstr 1991, 114, 24194q.Google Scholar
  176. Then J, Bartsch K, Deger HM, Grabley S, Marquardt R (1987) Verfahren zur Herstellung von L-tertiaer-Leucin und Z-Phosphinothricin durch Transaminierung. Eur Pat Appl EP 248 357 Hoechst AG; Chem Abstr 1988, 108, 220377s.Google Scholar
  177. Thompson CJ, Mowa NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Bottermann J (1987) Characterization of the herbicide-resistence gene BAR from Streptomyces hygroscopicus EMBO J 6: 2519–2523.Google Scholar
  178. Tombo GMR, Ramos D (1991) Chirality and crop protection. Angew Chem Int Ed Engl 30:1193–1215.CrossRefGoogle Scholar
  179. Trogisch GD, Koecher H, Ullrich WR (1989) Effects of glufosinate ammonium on anion uptake in Lemna gibba. Z Naturforsch 44c:33–38.Google Scholar
  180. Ullrich WR, Ullrich-Eberius CI, Koecher H (1990) Uptake of glufosinate and concomitant membrane potential changes in Lemna gibba. Pestic Biochem Physiol 37:1–11.CrossRefGoogle Scholar
  181. Usui K, Suwanwong S, Watanabe H, Ishizuka K (1991) Effect of benzsulfuron methyl, glyphosphate and glufosinate on amino acids and ammonium levels in carrot cells. Weed Res (Tokyo) 36:126–134.Google Scholar
  182. Wasielewsky C, Antczak K (1981) A new facile synthesis of phosphinothricine and 2-amino-4-phosphinobutanoic acid. Synthesis: 540–541.Google Scholar
  183. Weissermel K, Kleiner HJ, Finke M, Felcht UH (1981) Advances in organophosphorus chemistry based on dichloro(methyl)phosphane. Angew Chem Int Ed Engl 20:223–233.CrossRefGoogle Scholar
  184. Wendler Ch, Barniske M, Wild A (1990) Effect of phosphinothricin on photosynthesis and photorespiration of C3 and C4 plants. Phytosynth Res 24:55–61; Chem Abstr 1990, 112, 212420t.CrossRefGoogle Scholar
  185. Wendler Ch, Wild A (1990) Effect of phosphinothricin on photosynthesis and photorespiration. Z Naturforsch 45e:535–537.Google Scholar
  186. Wendler Ch, Putzer A, Wild A (1992) Effect of glufosinate and inhibitors of photorespiration on photosynthesis and ribulose-l,5-biphosphate carboxylase activity. J Plant Physiol 139:666–671.Google Scholar
  187. Wengenmayer, F (1988) Selektiver Pflanzenschlitz. Wiss Symp 125 Jahre Hoechst. Hoechst AG, Frankfurt am Main, pp 164–170.Google Scholar
  188. Wild A, Manderscheid R (1984) The effect of phosphinothricin on the assimilation of ammonia in plants. Z Naturforsch 39c:500–504.Google Scholar
  189. Wild A, Sauer H, Ruehle W (1987) The effect of phosphinothricin on photosynthesis. I. Inhibition of photosynthesis and accumulation ammonia. Z Naturforsch 42c:263–269.Google Scholar
  190. Wild A, Ziegler C (1989) The effect of bialaphos on ammonium-assimilation and photosynthesis. Z Naturforsch 44c:97–102.Google Scholar
  191. Wild A, Wendler Ch (1990) Effect of glufosinate on amino acid content, photorespiration, and photosynthesis. Pestic Science 30:422–424.Google Scholar
  192. Willms L (1988) Glufosinate-eine phosphorhaltige Aminosäure mit ungewöhnlichen Eigenschaften. Wiss Symp 125 Jahre Hoechst, Hoechst AG, Frankfurt am Main, pp 72–77.Google Scholar
  193. Willms L, Fuelling G, Keller R (1989) Enzymic resolution of racemic mixtures of phosphinothricin analogs. Eur Pat Appl EP 382 113 Hoechst AG; Chem Abstr 1991, 115, 206212x.Google Scholar
  194. Wise JL, Durling D (1983) Desiccation of rapeseed with glufosinate ammonium. Res Rept Expert Comm Weeds West Can 1:342.Google Scholar
  195. Wohlleben W, Arnold W, Broer J, Hillemann D, Strauch E, Puehler A (1988) Nucleotide sequence of phosphinothricin-N-acetyl-transferase gene from Streptomyces viridochromogenes Tue H 94 and its expression in Nicotiane tabacum. Gene 70:25–37.PubMedCrossRefGoogle Scholar
  196. Worsham AD, Saunders EM (1987) Comparison of glyphosate, glufosinate and paraquat for postdirected broadspectrum weed control in corn. Proc South Weed Sei Soc 40:72.Google Scholar
  197. Zeiss H J (1987a) An efficient asymmetric synthesis of both enantiomers of phosphinothricin. Tetrahedron Lett 28:1255–1258.CrossRefGoogle Scholar
  198. Zeiss HJ (1987b) Preparation of phosphinothricin and its derivatives via hydrogénation of unsaturated precursors. Eur Pat Appl EP 238 954 Hoechst AG; Chem Abstr 1988, 108, 22285x.Google Scholar
  199. Zeiss HJ (1989) Method for preparation of P-containing L-a-aminobutyric acids, their esters and N-derivatives. Eur Pat Appl EP 346 658 Hoechst AG; Chem Abstr 1990, 113, 6806r.Google Scholar
  200. Zeiss H J (1991) Enantioselective synthesis of both enantiomers of phosphinothricin via asymmetric hydrogénation of a-acylamino acrylates. J Org Chem 56:1783–1788.CrossRefGoogle Scholar
  201. Zeiss H J (1992) Enantioselective synthesis of L-phosphinothricin from L-methionine and L-glutamic acid via L-vinylglycine. Tetrahedron 48(38):8263–8270.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Gerhard Hoerlein
    • 1
    • 2
  1. 1.Frankfurt am MainGermany
  2. 2.Frankfurt am MainGermany

Personalised recommendations