Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 138))

Abstract

The continually growing worldwide hazardous waste problem must be dealt with by the present as well as future generations. Past production and improper disposal of large quantities of environmentally persistent and toxic chemicals by both the government and the private sector has generated very legitimate public health concerns. Widespread contamination of soils as well as groundwater and surface water has brought this problem to the forefront. Cleanup of environmental pollution also presents a serious economic burden to society. In the United States alone, the cost of environmental decontamination is thought to range between $0.5 and $1.0 trillion (Aust 1993). Considering the magnitude of this financial burden, it becomes apparent that cost-effective yet efficient methods of decontamination are vital to our success in solving the hazardous waste problem. One such method that has become increasingly popular is bioremediation. The use of indigenous or introduced microorganisms to decontaminate waste sites provides a very attractive economic solution to many of our hazardous pollution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akamatsu Y, Ma DB, Higuchi T, Shimada M (1990) A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. Fed Eur Biol Socs 269:261–263.

    Article  CAS  Google Scholar 

  • Aust SD, Bumpus JA (1989) Biological mineralization of constituents of coal tar by the white rot fungi. In: Proceedings of the Symposium on Biological Processing of Coal and Coal-Derived Substances, EPRI ER-6572, pp 4–49–4–63.

    Google Scholar 

  • Aust SD (1993) The fungus among us: Use of white rot fungi to biodegrade environmental pollutants. Environ Hlth Perspect 101:232–233.

    CAS  Google Scholar 

  • Barbeni M, Minero C, Pellizetti E (1987) Chemical degradation of chlorophenols with Fenton’s reagent. Chemosphere 16:2225–2237.

    Article  CAS  Google Scholar 

  • Barr DP, Shah MM, Grover TA, Aust SD (1992) Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 298:480–485.

    Article  PubMed  CAS  Google Scholar 

  • Barr DP, Shah MM, Aust SD (1993) Veratryl alcohol dependent production of molecular oxygen by lignin peroxidase. J Biol Chem 268:241–244.

    PubMed  CAS  Google Scholar 

  • Barr DP, Aust SD (1994a) Effect of superoxide and superoxide dismutase on lignin peroxidase. Arch Biochem Biophys 311:378–382.

    Article  PubMed  CAS  Google Scholar 

  • Barr DP, Aust SD (1994b) Conversion of lignin peroxidase compound III to active enzyme. Arch Biochem Biophys 312:511–515.

    Article  PubMed  CAS  Google Scholar 

  • Barr DP, Aust SD (1994c) Mechanisms white rot fungi use to degrade environmental pollutants. Environ Sei Technol 28:78A–87A.

    Article  CAS  Google Scholar 

  • Boominathan K, and Reddy, CA (1992) Fungal degradation of lignin: Biotechnological applications. In: Arora DK, Elander RP, Mukerji KG, (eds) Handbook of Applied Mycology. Marcel Dekker Inc, New York, vol 4, pp 763–821.

    Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol and ascorbate. Arch Biochem Biophys 300:535–543.

    Article  PubMed  CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987a) Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008.

    PubMed  CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987b) Mineralization of recalcitrant environmental pollutants by a white rot fungus. In: Proceedings of the National Conference on Hazardous Wastes and Hazardous Materials. Lib Congr Cat No 87–80469, pp 146–151.

    Google Scholar 

  • Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150.

    PubMed  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phaner-ochaete chrysosporium. Appl Environ Microbiol 55:154–158.

    PubMed  CAS  Google Scholar 

  • Cai D, Tien M (1990) Characterization of the oxycomplex of lignin peroxidases from Phanerochaete chrysosporium: Equilibrium and kinetics studies. Biochemistry 29:2085–2091.

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Tien M (1993) Lignin-degrading peroxidases of Phanerochaete chrysospor-ium. J Biotechnol 30:79–90.

    Article  PubMed  CAS  Google Scholar 

  • Chung N, Shah MM, Grover TA, Aust SD (1993) Reductive activity of a manganese-dependent peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 306:70–75.

    Article  PubMed  CAS  Google Scholar 

  • Coulter C, Kennedy JT, McRoberts WC, Harper DB (1993) Purification and properties of an S-adenosylmethionine 2,4-disubstituted phenol o-methyl transferase from Phanerochaete chrysosporium. Appl Environ Microbiol 59:706–711.

    PubMed  CAS  Google Scholar 

  • Crawford R (1981) In: Lignin Biodegradation and Transformation. Wiley, New York.

    Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118.

    PubMed  CAS  Google Scholar 

  • Faison BD, Kirk TK (1983) Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium. Appl Environ Microbiol 46:1140–1145.

    PubMed  CAS  Google Scholar 

  • Faison BD, Kirk TK (1985) Factors involved in regulation of ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49:299–304.

    PubMed  CAS  Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodégradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56: 1666–1671.

    PubMed  CAS  Google Scholar 

  • Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by white rot fungus Phanerochaete chrysosporium. J Biol Chem 257:11455–11462.

    PubMed  CAS  Google Scholar 

  • Gilardi C, Harvey PJ, Cass AEG, Palmer JM (1990) Radical intermediates in veratryl alcohol oxidation by ligninase. NMR evidence. Biochim Biophys Acta 1041: 129–132.

    Article  CAS  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341.

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696.

    Article  PubMed  CAS  Google Scholar 

  • Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986) Oxidation of benzo(a)-pyrene by extracellular ligninases of Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696.

    Article  Google Scholar 

  • Haggblom MM, Apajalahti JHA, Salkinoja-Salonen MS (1988) O-methylation of chlorinated para-hydroquinones by Rhodococcus chlorophenolicus. Appl Environ Microbiol 54:1818–1824.

    PubMed  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16953.

    PubMed  CAS  Google Scholar 

  • Harper DB, Hamilton JTG (1988) Biosynthesis of chloromethane in Phellinus pomaceus. J Gen Microbiol 134:2831–2839.

    CAS  Google Scholar 

  • Harper DB, Hamilton JTG, Kennedy JT, McNally KJ (1989) Chloromethane, a novel methyl donor for biosynthesis of esters and anisoles in Phellinus pomaceus. Appl Environ Microbiol 55:1981–1989.

    PubMed  CAS  Google Scholar 

  • Harper DB, Buswell JA, Kennedy JT, Hamilton JTG (1990) Chloromethane, methyl donor in veratryl alcohol biosynthesis in Phanerochaete chrysosporium and other lignin-degrading fungi. Appl Environ Microbiol 56:3450–3457.

    PubMed  CAS  Google Scholar 

  • Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodégradation by Phanerochaete chrysosporium. Fed Eur Biol Socs Lett 195:242–246.

    Article  CAS  Google Scholar 

  • Harvey PJ, Palmer JM (1990) Oxidation of phenolic compounds by ligninase. J Biotechnol 13:169–179.

    Article  CAS  Google Scholar 

  • Higson FK (1991) Degradation of xenobiotics by white rot fungi. Environ Contam Toxicol 122:111–152.

    CAS  Google Scholar 

  • Jesseming T, Huang CP (1991) Photocatalytic oxidation process for the treatment of organic wastes. In: Eckerfelder WW, Bowers AR, Roth JA (eds) First International Symposium on Chemical Oxidation, Vanderbilt University, Nashville, TN, pp 262–277.

    Google Scholar 

  • Joshi DK, Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:1779–1785.

    PubMed  CAS  Google Scholar 

  • Kaplan DL, Kaplan AM (1982) Mutagenicity of 2,4,6-trinitrotoluene-surfactant complexes. Bull Environ Contam Toxicol 28:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Reddy CA (1986) Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic culture of Phanerochaete chrysosporium. Arch Microbiol 144:248–253.

    Article  CAS  Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodégradation of alkyl halide insecticides by the white rot fungus Phanerochaete chrysosporium (BK-M-F-1767). Appl Environ Microbiol 56:2347–2353.

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H202 production by Phanerochaete chrysosporium. J Bacteriol 169: 2195–2201.

    PubMed  CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: Its role, characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87: 2936–2940.

    Article  PubMed  CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase, and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480.

    PubMed  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285.

    Article  CAS  Google Scholar 

  • Kirk TK, Shimada M (1985) Lignin biodégradation: The microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In: Biosynthesis and Biodégradation of Wood Compounds. Academic Press Inc, San Diego, pp 579–605.

    Google Scholar 

  • Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986) Production of multiple ligninases by Phanerochaete chrysosporium: Effect of selected growth conditions and use of a mutant strain. Enz Microb Technol 8:27–32.

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzyme “combustion”: The microbial degradation of lignin. Ann Rev Microbiol 41:465–505.

    Article  CAS  Google Scholar 

  • Kirk TK, Lamar RT, Glaser JA (1992) The potential of white rot fungi in bioremediation. In: Mongkolsuk S, Lovett PS, Trempy JE (eds) Biotechnology and Environmental Science—Molecular Approaches. Plenum Press, New York, pp 131–138.

    Chapter  Google Scholar 

  • Knowles CJ (1976) Microorganisms and cyanide. Bacteriol Rev 40:652–680.

    PubMed  CAS  Google Scholar 

  • Kochany J, Bolton JR (1992) Mechanism of photodegradation of aqueous organic pollutants. Measurement of primary rate constants for reaction of OH radicals with benzene and some halobenzenes in using EPR spin trapping method following photolysis of H202. Environ Sci Technol 26:262–265.

    Article  CAS  Google Scholar 

  • Koenigs JW (1974) Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes. Arch Microbiol 99:129–145.

    Article  CAS  Google Scholar 

  • Kohler A, Jager A, Willershausen H, Graf H (1988) Extracellular ligninase of Phanerochaete chrysosporium Burdsall has no role in the degradation of DDT. Appl Microbiol Biotechnol 29:618–620.

    Article  Google Scholar 

  • Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: A possible role for oxalate in lignin biodégradation. Proc Natl Acad Sci USA 90:1242–1246.

    Article  PubMed  CAS  Google Scholar 

  • Mileski G J, Bumpus J A, Jurek MA, Aust SD (1988) Biodégradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889.

    PubMed  CAS  Google Scholar 

  • Nakajima R, Hoshino N, Yamazaki I (1991) Oxidative decomposition of oxyperoxidase during peroxidase reactions—Effect of localization of the enzyme. In: Lobarezewski J, Greppin H, Penel C, Gaspar Th (eds) Biochemical, molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, Switzerland, pp 89–97.

    Google Scholar 

  • Nay MW, Randall CW, King PH (1974) Biological treatability of trinitrotoluene manufacturing waste water. J Water Pollut Control Fed 46:485–497.

    PubMed  CAS  Google Scholar 

  • Ollika P, Alhonmaki K, Leppanen VM, Glumoff T, Raijola T, Suominea I (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016.

    Google Scholar 

  • Popp JL, Kalyanaraman B, Kirk TK (1990) Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen. Biochemistry 29:10475–10480.

    Article  PubMed  CAS  Google Scholar 

  • Ruckdeshel G, Renner G (1986) Effect of pentachlorophenol and some of its known and possible metabolites on fungi. Appl Environ Microbiol 53:2689–2692.

    Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) In: Lignins: Occurrences, Formation and Structure. Wiley-Interscience, New York, pp 1–8.

    Google Scholar 

  • Schoemaker HE (1990) On the chemistry of lignin biodégradation. Reel Trav Chim Pays-Bas 109:255–272.

    Article  CAS  Google Scholar 

  • Schott S, Ruchhoft CC, Megregian S (1943) TNT wastes. Ind Eng Chem 35:1122–1127.

    Article  CAS  Google Scholar 

  • Sedlak DL, Andren AW (1991) Aqueous-phase oxidation of polychlorinated biphe- nyls by hydroxyl radicals. Environ Sci Technol 25:1419–1426.

    Article  CAS  Google Scholar 

  • Shah MM, Grover TA, Barr DP, Aust SD (1992) On the mechanism of the inhibition of the veratryl alcohol oxidase activity of lignin peroxidase by EDTA. J Biol Chem 267:21564–21569.

    PubMed  CAS  Google Scholar 

  • Shah MM, Aust SD (1993) Degradation of cyanide by the white rot fungus Phanero¬chaete chrysosporium. In: Tedder DW (ed) Emerging technologies for hazardous waste management. ACS Symp Ser 518:191–202.

    Article  CAS  Google Scholar 

  • Shah MM, Grover TA, Aust SD (1993) Reduction of CC14 to the trichloromethyl radical by lignin peroxidase H2 from Phanerochaete chrysosporium. Biochem Biophys Res Commun 191:887–892.

    Article  PubMed  CAS  Google Scholar 

  • Shimada M, Nakatsubo F, Kirk TK, Higuchi T (1981) Biosynthesis of the secondary metabolite veratryl alcohol in relation to lignin degradation in Phanerochaete chrysosporium. Arch Microbiol 129:321–324.

    Article  CAS  Google Scholar 

  • Simic MG (1990) Pulse radiolysis in study of oxygen radicals. Meth Enzymol 186: 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Sollod CC, Jenns AE, Daub ME (1992) Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl Environ Microbiol 58: 444–449.

    PubMed  CAS  Google Scholar 

  • Stahl JD, Aust SD (1993a) Plasma-membrane-dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Biochem Biophys Res Commun 192: 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Stahl JD, Aust SD (1993B) Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem Biophys Res Commun 192:477–482.

    Article  CAS  Google Scholar 

  • Takao S (1965) Organic acid production by basidiomycetes I. Screening of acid producing strains. Appl Microbiol 13:732–737.

    CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663.

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1984) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium burds. J Biol Chem 261:1687–1693.

    Google Scholar 

  • Tien M (1987) Properties of ligninase from Phanerochaete chrysosporium and possible applications. CRC Crit Rev Microbiol 15:141–168.

    Article  CAS  Google Scholar 

  • Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD (1990) Lignin peroxidase H2 from Phanerochaete chrysosporium: Purification, characterization and stability to temperature and pH. Arch Biochem Biophys 279:158–166.

    Article  PubMed  CAS  Google Scholar 

  • Tuisel H, Grover TA, Bumpus JA, Aust SD (1992) Inhibition of veratryl alcohol oxidase activity of lignin peroxidase H2 by 3-amino-l,2,4-triazole. Arch Biochem Biophys 293:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Wariishi H, Gold MH (1989) Lignin-peroxidase compound III: Formation, inactivation, and conversion to the native enzyme. Fed Eur Biol Socs Lett 243:165–168.

    Article  CAS  Google Scholar 

  • Wariishi H, Gold MH (1990) Lignin-peroxidase compound III: Mechanism of formation and decomposition. J Biol Chem 265:2070–2077.

    PubMed  CAS  Google Scholar 

  • Westermark U, Eriksson KE (1974) Cellobiose quinone oxidoreductase, a new wood degrading enzyme from white rot fungi. Acta Chem Scand 28:209–214.

    Article  CAS  Google Scholar 

  • Yamazaki I, Piette LH (1963) The mechanism of aerobic oxidase reaction catalyzed by peroxidase. Biochim Biophys Acta 77:47–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Barr, D.P., Aust, S.D. (1994). Pollutant Degradation by White Rot Fungi. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 138. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2672-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2672-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7629-6

  • Online ISBN: 978-1-4612-2672-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics