Epstein-Barr Virus

  • Kenneth F. TrofatterJr.
Part of the Clinical Perspectives in Obstetrics and Gynecology book series (CPOG)


Epstein-Barr virus (EBV) was discovered growing in cultured lymphoblasts derived from patients with Burkitt’s lymphoma in 1964.1 Serologic evidence presented in 1966 also suggested a relationship between EBV and nasopharyngeal carcinoma.2 Subsequently, in 1968 EBV was demonstrated to be the causative agent of infectious mononucleosis.3 Now EBV is recognized to be a ubiquitous agent, with more than 95% of the adult population worldwide having serologic evidence of exposure.4


Chronic Fatigue Syndrome Nasopharyngeal Carcinoma Infectious Mononucleosis Heterophile Antibody Oral Hairy Leukoplakia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964; 1: 702–703.PubMedCrossRefGoogle Scholar
  2. 2.
    Old LJH, Boyse EA, Oettgen HF, et al. Precipitating antibody in human serum to an antigen present in cultured Burkitt’s lymphoma cells. Proc Natl Acad Sei USA. 1966; 56: 1699–1704.CrossRefGoogle Scholar
  3. 3.
    Henle G, Henle W, Diehl V. Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sei USA. 1968; 59: 94–101.CrossRefGoogle Scholar
  4. 4.
    Le CT, Chang RS, Lipson MH. Epstein-Barr virus infections during pregnancy: A prospective study and review of the literature. Am J Dis Child. 1983; 137: 466–468.PubMedGoogle Scholar
  5. 5.
    Baer R, Bankier AT, Biggin MD, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984; 310: 207–211.PubMedCrossRefGoogle Scholar
  6. 6.
    Sixbey JW, Nedrud JG, Raab-Traub N, et al. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984; 310: 1225–1230.PubMedCrossRefGoogle Scholar
  7. 7.
    Wolf H, Haus M, Wilmes E. Persistence of Epstein-Barr virus in the parotid gland. J Virol. 1984; 51: 795–798.PubMedGoogle Scholar
  8. 8.
    Allday M J, Crawford DH. Role of epithelium in EBV persistence and pathogenesis of B-cell tumours. Lancet. 1988; 1: 855–857.PubMedCrossRefGoogle Scholar
  9. 9.
    Sixbey JW, Lemon SM, Pagano JS. A second site for Epstein-Barr virus shedding: The uterine cervix. Lancet. 1986; 2: 1122–1124.PubMedCrossRefGoogle Scholar
  10. 10.
    Fingeroth JD, Weis JJ, Tedder TF, et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sei USA. 1984; 81: 4510–4514.CrossRefGoogle Scholar
  11. 11.
    McClure JE. Cellular receptor for Epstein- Barr virus. Prog Med Virol 1992; 39: 116–138.PubMedGoogle Scholar
  12. 12.
    Delcayre AX, Salas F, Mathur S, et al. Epstein-Barr virus/complement C3d receptor is an interferon alpha receptor. EMBO J. 1991; 10: 919–926.PubMedGoogle Scholar
  13. 13.
    Tanner J, Weis J, Fearon D, et al. Epstein- Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping and endocytosis. Cell. 1987;50:203– 213.PubMedCrossRefGoogle Scholar
  14. 14.
    Tosato G. The Epstein-Barr virus and the immune system. In: Klein G, Weihouse S, eds. Advances in Cancer Research. London: Academic Press; 1987: 49–75.Google Scholar
  15. 15.
    Kieff E, Liebowitz D. Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, eds. Virology. New York: Raven Press; 1990: 1889–1920.Google Scholar
  16. 16.
    Sample C, Kieff E. Molecular basis for Epstein-Barr virus induced pathogenesis and disease. Springer Semin Immunopathol. 1991; 13: 133–146.PubMedCrossRefGoogle Scholar
  17. 17.
    Rogers RP, Strominger JL, Speck SH. Epstein-Barr virus in B lymphocytes: Viral gene expression and function in latency. Adv Cancer Res. 1992; 58: 1–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Hudson GS, Bankier AT, Satchwell SC, et al. The short unique region of the B95-8 Epstein-Barr virus genome. Virology. 1985; 147: 81–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Sugden B, Warren N. A promoter of Epstein- Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol. 1989; 63: 2644–2649.PubMedGoogle Scholar
  20. 20.
    Wang D, Liebowitz D, Wang F, et al. Epstein-Barr virus latent infection membrane protein alters the human B lymphocyte phenotype: Deletion of the amino terminus abolishes activity. J Virol. 1988;62:4173– 4184.PubMedGoogle Scholar
  21. 21.
    Wang F, Gregory C, Sample C, et al. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMPl cooperatively induce CD23. J Virol. 1990; 64: 2309–2318.PubMedGoogle Scholar
  22. 22.
    Takada K, Ono Y. Synchronous and sequential activation of latently infected Epstein- Barr virus genomes. J Virol. 1989; 63: 445–504.PubMedGoogle Scholar
  23. 23.
    Takada K, Horinouchi K, Ono Y, et al. An Epstein-Barr virus-producer line Akata: Establishment of the cell line and analysis of viral DNA. Virus Genes. 1991; 5: 147–156.PubMedCrossRefGoogle Scholar
  24. 24.
    Daibata M, Humphreys RE, Takada K, et al. Activation of latent EBV via anti-IgG- triggered, second messenger pathways in the Burkitt’s lymphoma cell line Akata. J Immunol. 1990; 144: 4788–4793.PubMedGoogle Scholar
  25. 25.
    Sinclair AJ, Farrell PJ. Epstein-Barr virus transcription factors. Cell Growth Diff. 1992; 3: 557–563.PubMedGoogle Scholar
  26. 26.
    Flemington E, Speck SH. Autoregulation of Epstein-Barr virus BZLFl putative lytic switch gene BZLF 1. J Virol. 1990;64:1227– 1232.PubMedGoogle Scholar
  27. 27.
    Sinclair AJ, Brimmell M, Shanahan F, et al. Pathways of activiation of the Epstein-Barr virus productive cycle. J Virol. 1991;65:2237– 2244.PubMedGoogle Scholar
  28. 28.
    Hardwick JM, Lieberman PM, Hayward SD. A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol. 1988; 62: 2274–2284.PubMedGoogle Scholar
  29. 29.
    Flemington EK, Goldfeld AE, Speck SH. Efficient transcription of the Epstein-Barr virus immediate-early BZLFl and BRLFl genes requires protein synthesis. J Virol. 1991; 65: 7073–7077.PubMedGoogle Scholar
  30. 30.
    Meilinghoff I, Daibata M, Humphreys RE, et al. Early events in Epstein-Barr virus genome expression after activation-Regulation by second messengers of B cell activation. Virology. 1991; 185: 922–928.CrossRefGoogle Scholar
  31. 31.
    Kenney S, Holley-Guthrie E, Mar E-C, et al. The Epstein-Barr virus BMLFl promoter contains an enhancer element that is responsive to the BZLFl and BRLFl transac- tivators. J Virol. 1989; 63: 3878–3883.PubMedGoogle Scholar
  32. 32.
    Holley-Guthrie EA, Quinlivan EB, Mar E-C, et al. The Epstein-Barr virus (EBV) BMRFl promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLFl and BZLFl, in a cell-specific manner. J Virol. 1990; 64: 3753–3759.PubMedGoogle Scholar
  33. 33.
    Svedmyr E, Ernberg I, Seeley J, et al. Virologie, immunologic, and clinical observations on a patient during the incubation, acute, and convalescent phases of infectious mononucleosis. Clin Immunol Immunopathol. 1984; 30: 437–450.PubMedCrossRefGoogle Scholar
  34. 34.
    Sixbey J, Shirley P, Chesney P, et al. Detection of a second widespread strain of Epstein- Barr virus. Lancet. 1989; 2: 761–765.PubMedCrossRefGoogle Scholar
  35. 35.
    Biggar R, Henle W, Fleisher G, et al. Primary Epstein-Barr virus infections in African infants. I. Decline of maternal antibodies and time of infection. Int J Cancer. 1978;22:239– 243.PubMedCrossRefGoogle Scholar
  36. 36.
    De-Thé G. Epidemiology of Epstein-Barr virus and associated diseases in man. In: Roizman B, ed. The Herpesviruses. New York: Plenum Press; 1982; 1: 25.Google Scholar
  37. 37.
    Paul JR, Bunnell WW. The presence of heterophil antibodies in infectious mononucleosis. Am J Med Sei. 1932; 183: 90–104.CrossRefGoogle Scholar
  38. 38.
    Pearson GR. Infectious mononucleosis: The humoral response. In: Schlossberg D, ed. Infectious Mononucleosis. New York: Springer- Verlag; 1989: 89–99.Google Scholar
  39. 39.
    Okano M, Thiele GM, Davis JR, et al. Epstein-Barr virus and human diseases: Recent advances in diagnosis. Clin Microbiol Rev. 1988; 1: 300–312.PubMedGoogle Scholar
  40. 40.
    Gervais F, Joncas JH. Epstein-Barr virus infection: Seroepidemiology in various population groups of the greater Montreal area. Comp Immunol Microbiol Infect Dis. 1979; 2: 207–212.PubMedCrossRefGoogle Scholar
  41. 41.
    Andersson JP. Clinical aspects of Epstein- Barr virus infections. Scand J Infect Dis. 1991;suppl 78:94–104.Google Scholar
  42. 42.
    Henle W, Henle G. Epstein-Barr virus specific serology in immunologically compromised individuals. Cancer Res. 1981;41:4222– 4228.Google Scholar
  43. 43.
    Rickinson AB. Cellular immunologic responses to the virus infection. In: Epstein MA, Achong BG, eds. The Epstein-Barr Virus: Recent Advances. New York: John Wiley; 1986: 75.Google Scholar
  44. 44.
    Wang F, Blaese RM, Zoon KC, et al. Suppressor T cell clones from patients with acute Epstein-Barr virus-induced infectious mononucleosis. J Clin Invest. 1987; 75: 7–14.CrossRefGoogle Scholar
  45. 45.
    Murray RJ, Wang G, Young LS, et al. Epstein-Barr virus-specific cytotoxic T-cell recognition of transfectants expressing the virus-coded latent membrane protein. J Virol. 1988; 62: 3747–3755.PubMedGoogle Scholar
  46. 46.
    Murray RJ, Kurilla MG, Griffin HM, et al. Human cytotoxic T cell responses against Epstein-Barr virus nuclear antigens demonstrated using recombinant vaccinia viruses. Proc Natl Acad Sei USA. 1990; 87: 2906–2910.CrossRefGoogle Scholar
  47. 47.
    Bejarano MT, Masucci M, Klein G, et al. T cell inhibition of EBV induced B cell transformation: Recognition of virus particles. Int J Cancer. 1988; 42: 359–364.PubMedCrossRefGoogle Scholar
  48. 48.
    Bejarano MT, Masucci M, Morgan A, et al. Epstein-Barr virus (EBV) antigens processed and presented by B cells, B cell blasts, and macrophages trigger T cell mediated inhibition of EBV induced B cell transformation. J Virol. 1990; 64: 1398–1401.PubMedGoogle Scholar
  49. 49.
    Misko IS, Sculley TB, Schmidt T, et al. Composite response of naive T cells to stimulation with the autologous lymphoblastoid cell line is mediated by CD4 cytotoxic T cell clones and includes an Epstein-Barr virus specific component. Cell Immunol. 1991; 132: 295–307.PubMedCrossRefGoogle Scholar
  50. 50.
    Moss DJ, Burrows SR, Khanna R, et al. Immune surveillance against Epstein-Barr virus. Semin Immunol. 1992; 4: 97–104.PubMedGoogle Scholar
  51. 51.
    Hsu D-H,, de Waal Malefyt R, Fiorentino DF et al. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRFl. Science. 1990; 250: 830–832.PubMedCrossRefGoogle Scholar
  52. 52.
    De Waal Malefyt R, Haanen J, Spits H, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-present- ing capacity of monocytes via downregula- tion of class II major histocompatibility complex expression. J Exp Med. 1991;174:915– 924.Google Scholar
  53. 53.
    Moore KW, Rousset F, Banchereau J. Evolving principles in immunopathology: Interleukin 10 and its relationship to Epstein-Barr virus protein BCRFl. Springer Semin Immunopathol. 1991; 13: 157–166.PubMedCrossRefGoogle Scholar
  54. 54.
    Moore KW, O’Garra A,, de Waal Malefyt R et al. Interleukin-10. Annu Rev Immunol. 1993; 11: 165–190.PubMedCrossRefGoogle Scholar
  55. 55.
    Ornoy A, Dudai M, Sadovsky E. Placental and fetal pathology in infectious mononucleosis: A possible indicator for Epstein-Barr virus teratogenicity. Gynecol Obstet. 1982; 4: 11–16.Google Scholar
  56. 56.
    Wong SY, Sewell HF, MacGregor IE, et al. Epstein-Barr virus-A possible missing link in the initiation of cervical carcinogenesis? Med Hypotheses. 1991; 35: 219–222.PubMedCrossRefGoogle Scholar
  57. 57.
    Israele V, Shirley P, Sixbey JW. Excretion of the Epstein-Barr virus from the genital tract of men. J Infect Dis. 1991; 163: 1341–1343.PubMedCrossRefGoogle Scholar
  58. 58.
    Mroczek EC, Weisenburger DD, Lipscomb Grievson H, et al. Fatal infectious mononucleosis and virus-associated hemophagocytic syndrome. Arch Pathol Lab Med. 1987; 111: 530–535.PubMedGoogle Scholar
  59. 59.
    Sanguineti G, Crovato F, DeManchi R, et al. “Alice in Wonderland” syndrome in a patient with infectious mononucleosis. J Infect Dis. 1983; 147: 782.PubMedCrossRefGoogle Scholar
  60. 60.
    Purtilo DT, Strobach RS, Okano M, et al. Biology of disease. Epstein-Barr virus-associated lymphoproliferative disorders. Lab Invest. 1992; 67: 5–23.PubMedGoogle Scholar
  61. 61.
    Strauss SE. Acute progressive Epstein-Barr virus infections. Annu Rev Med. 1992;43:437– 449.Google Scholar
  62. 62.
    Miller G, Grogan E, Rowe D, et al. Selective lack of antibody to a component of EB nuclear antigen in patients with chronic active Epstein-Barr virus infection. J Infect Dis. 1987; 156: 26.PubMedCrossRefGoogle Scholar
  63. 63.
    Schooley RT, Carey RW, Miller G, et al. Chronic Epstein-Barr virus infection associated with fever and interstitial pneumonitis. Clinical and serological features and response to antiviral chemotheraphy. Ann Intern Med. 1986; 104: 636.PubMedGoogle Scholar
  64. 64.
    Okano M, Matsumoto S, Osato T, et al. Severe chronic active Epstein-Barr virus infection syndrome. Clinc Microbiol Rev. 1991; 4: 129–135.Google Scholar
  65. 65.
    Gaffey MJ, Weiss LM. Association of Epstein-Barr virus with human neoplasia. Pathol Annu. 1992; 27: 55–74.PubMedGoogle Scholar
  66. 66.
    Lam KM, Whittle H, Crawford P. Circulating Epstein-Barr virus-carrying B cells in acute malaria. Lancet. 1991; 1: 876–878.CrossRefGoogle Scholar
  67. 67.
    Whittle HC, Brown J, Marsh K, et al. T-cell control of Epstein-Barr virus-infected cells is lost during P. falciparum malaria. Nature. 1984; 312: 449–450.PubMedCrossRefGoogle Scholar
  68. 68.
    Bernheim A, Berger R, Lenoir G. Cytogenetic studies on African Burkitt’s lymphoma cell lines: t(8; 14), t(2; 8) and t(8; 22) translocations. Cancer Genet Cytogenet. 1981; 3: 307–315.PubMedCrossRefGoogle Scholar
  69. 69.
    Croce CM, Nowell PC. Molecular genetics of human B cell neoplasia. Adv Immunol. 1985; 38: 245–274.CrossRefGoogle Scholar
  70. 70.
    Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986; 47: 883–889.PubMedCrossRefGoogle Scholar
  71. 71.
    Manolov G, Manolova Y. Marker bank in one chromosome 14 from Burkitt’s lymphomas. Nature. 1972; 237: 33–34.PubMedCrossRefGoogle Scholar
  72. 72.
    Aya T, Kinoshita T, Imai S, et al. Chromosome translocation and c-myc activation by Epstein-Barr virus and Euphorbia tirucalli in B lymphocytes. Lancet. 1991; 1: 1190.CrossRefGoogle Scholar
  73. 73.
    Parkin DM, Stjemsward J, Muir CS. Estimates for the worldwide frequency of twelve major cnacers. Bull WHO. 1984; 62: 163–182.PubMedGoogle Scholar
  74. 74.
    Ho JHC. The natural history and treatment of nasopharyngeal carcinoma (NPC). Oncol Year Book. 1970; 4: 1–14.Google Scholar
  75. 75.
    Ablashi BV, Allal M, Armstrong G, et al. Some characteristics of nasopharyngeal carcinoma in Algeria. In: Grundman E, Krueger GRF, Albashi DV, eds. Cancer Campaign. New York: Gustav Fischer Verlag; 1981: 5167–5175.Google Scholar
  76. 76.
    Fahraeus R, Fu H-L, Ernberg I, et al. Expression of Epstein-Barr virus encoded proteins in nasopharyngeal carcinoma. Int J Cancer. 1988; 42: 329–338.PubMedCrossRefGoogle Scholar
  77. 77.
    Young LS, Dawson CW, Clark D, et al. Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol. 1988; 69: 1051–1065.PubMedCrossRefGoogle Scholar
  78. 78.
    Zeng Y, Liu YX, Wei JN, et al. Serological mass survey of nasopharyngeal carcinoma. Chung Kuol Hsueh Yuan Hsueh Pao. 1979; 1: 123–126.Google Scholar
  79. 79.
    Zeng Y, Zhong JM, Li LY et al. Follow-up studies on Epstein-Barr virus IgA/VCA antibody-positive persons in Zangwu County, China. Intervirology. 1983; 20: 190–194.PubMedCrossRefGoogle Scholar
  80. 80.
    Pearson GR, Weiland LH, Neel HB, et al. Application of Epstein-Barr virus (EBV) serology to the diagnosis of North American nasopharyngeal carcinoma. Cancer. 1983; 51: 260–268.PubMedCrossRefGoogle Scholar
  81. 81.
    Tam JS, Murray HGS. Nasopharyngeal carcinoma and Epstein-Barr virus-associated serologic markers. Ear Nose Throat J. 1990; 69: 261–267.PubMedGoogle Scholar
  82. 82.
    Purtilo DT, Cassel C, Yang JP, et al. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet. 1975; 1: 935–941.PubMedCrossRefGoogle Scholar
  83. 83.
    Purtilo DT, DeFlorio D Jr, Huff LM, et al. Variable phenotypic expression of an X-linked lymphoproliferative syndrome. N Engl J Med. 1977; 297: 1077–1081.PubMedCrossRefGoogle Scholar
  84. 84.
    Skare JC, Grierson HL, Sullivan JL, et al. Linkage analysis of seven kindreds with the X-linked lymphoproliferative syndrome (XLP) confirms that the XLP locus is near DXS42 and DXS37. Hum Genet. 1989;82:354– 358.Google Scholar
  85. 85.
    Itin PH, Rufli T. Oral hairy leukoplakia. Int J Dermatol. 1992; 31: 301–306.PubMedCrossRefGoogle Scholar
  86. 86.
    Schiodt M, Greenspan D, Daniels TE, et al. Clinical and histologic spectrum of oral hairy leukoplakia. Oral Surg Oral Med Oral Pathol 1987; 64: 716–720.PubMedCrossRefGoogle Scholar
  87. 87.
    Greenspan D, Greenspan JS, Hearst NG, et al. Relation of oral hairy leukoplakia to infection with the human immunodeficiency virus and the risk of developing AIDS. J Infect Dis. 1987; 155: 475–481.PubMedCrossRefGoogle Scholar
  88. 88.
    Greenspan JS, Greenspan D, Lennette ET. Replication of Epstein-Barr virus within the epithelial cells of oral hairy leukoplakia, an AIDS-associated lesion. N Engl J Med. 1985; 312: 1564–1571.CrossRefGoogle Scholar
  89. 89.
    Gilligan K, Rajadurai P, Resnick L, et al. Epstein-Barr virus small nuclear RNAs are not expressed in permissively infected cells in AIDS-associated leukoplakia. Proc Natl Acad Sei USA. 1990; 87: 8790–8794.CrossRefGoogle Scholar
  90. 90.
    Hitt MM, Allday MJ, Hara T, et al. EBV gene expression in an NPC-related tumour. EMBO J. 1989; 8: 2639–2651.PubMedGoogle Scholar
  91. 91.
    Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus: Altered antibody pattern before diagnosis. N Engl J Med. 1989; 320: 689–695.PubMedCrossRefGoogle Scholar
  92. 92.
    Herbst H, Pallesen G, Weiss LM, et al. Hodgkin’s disease and Epstein-Barr virus. Ann Oncol. 1992; 3 (suppl 4): 527–530.Google Scholar
  93. 93.
    Weiss LM, Movahed LA, Warnke RA, et al. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989; 320: 502–506.PubMedCrossRefGoogle Scholar
  94. 94.
    Herbst H, Niedobitek G, Kneba M, et al. High incidence of Epstein-Barr virus genomes in Hodgkin’s disease. Am J Pathol. 1990; 137: 13–18.PubMedGoogle Scholar
  95. 95.
    Wright C, Ventre K, Tsai M, et al. Epstein- Barr virus related sequence in formalin- fixed, paraffin-embedded tissue: Identification by polymerase chain reaction amplification. Lab Invest. 1990; 62: 108–113.Google Scholar
  96. 96.
    Anagnostopoulos I, Herbst H, Niedobitek G, et al. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1 positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989; 74: 810–816.PubMedGoogle Scholar
  97. 97.
    Cohen JI. Epstein-Barr virus lymphoproli- ferative disease associated with acquired immunodeficiency. Medicine (Baltimore). 1991; 70: 137–160.CrossRefGoogle Scholar
  98. 98.
    Subar M, Neri A, Inghirami G, et al. Frequent c-myc oncogene activation and infrequent presence of Epstein-Barr virus genome in AIDS-associated lymphoma. Blood. 1988; 72: 667–671.PubMedGoogle Scholar
  99. 99.
    Borisch-Chappuis B, Nezelof C, Muller H, et al. Different Epstein-Barr virus expression in lymphomas from immunocompromised and immunocompetent patients. Am J Pathol. 1990; 136: 751–758.PubMedGoogle Scholar
  100. 100.
    Schuster V, Kreth HW. Epstein-Barr virus infection and associated diseases in children. I. Pathogenesis, epidemiology and clinical aspects. Eur J Pediatr. 1992; 151: 718–725.PubMedCrossRefGoogle Scholar
  101. 101.
    Andersson M, Klein G, Ziegler JL, et al. Association of Epstein-Barr viral genomes with American Burkitt lymphoma. Nature. 1976; 260: 357–359.PubMedCrossRefGoogle Scholar
  102. 102.
    Cleary ML, Warnke R, Sklar J. Monoclo- nality of lymphoproliferative lesions in cardiac-transplant recipients. N Engl J Med. 1984; 310: 477–482.PubMedCrossRefGoogle Scholar
  103. 103.
    Shapiro RS, Chauvenet A, McGuire W, et al. Treatment of B-cell lymphoproliferative disorders with interferon alfa and intravenous gamma globulin. N Engl J Med. 1988; 315: 1334.Google Scholar
  104. 104.
    Fleisher G, Bologonese R. Epstein-Barr virus infections in pregnancy: A prospective study. J Pediatr. 1984; 104: 364–379.Google Scholar
  105. 105.
    Hunter K, Stagno S, Capps E, et al. Prenatal screening of pregnant women for infections caused by cytomegalovirus, Epstein-Barr virus, herpesvirus, rubella, and Toxoplasmosis gondii. Am J Obstet Gynecol. 1983;145:269– 273.PubMedGoogle Scholar
  106. 106.
    Icart J, Didier J, Dalens M, et al. Prospective study of Epstein-Barr virus (EBV) infection during pregnancy. Biomedicine. 1981; 34: 160–163.PubMedGoogle Scholar
  107. 107.
    Fleisher G, Bolognese R. Persistent Epstein -Barr virus infection and pregnancy. J Infect Dis. 1983; 147: 982–986.PubMedCrossRefGoogle Scholar
  108. 108.
    Waterson AP. Virus infection (other than rubella) during pregnancy. Br Med J. 1979; 2: 564–566.PubMedCrossRefGoogle Scholar
  109. 109.
    Costa S, Barrasso R, Terzano P, et al. Detection of active Epstein-Barr infection in pregnant women. Eur J Clin Microbiol. 1985; 4: 335–336.PubMedCrossRefGoogle Scholar
  110. 110.
    Sakamoto K, Greally J, Gilfillan RF, et al. Epstein-Barr virus in normal pregnant women. Am J Reprod Immunol. 1982; 2: 217–221.PubMedGoogle Scholar
  111. 111.
    Icart J, Didier J. Infections due to Epstein-Barr virus during pregnancy. J Infect Dis. 1981; 143: 499.PubMedCrossRefGoogle Scholar
  112. 112.
    Fleisher G, Bologonese R. Infectious mononucleosis during gestation: Report of three women and their infants studied prospectively. Pediatr Infect Dis. 1984; 3: 308–311.PubMedCrossRefGoogle Scholar
  113. 113.
    Miller HC, Clifford SH, Smith CA, et al. Study of the relationship of congenital malformation to maternal rubella and other infections: Preliminary report. Pediatrics. 1949; 3: 259–270.PubMedGoogle Scholar
  114. 114.
    Niederman JC, McCollum RW, Henle G, et al. Infectious mononucleosis. Clinical manifestations in relation to EBV antibodies. JAMA. 1968; 203: 205–212.PubMedCrossRefGoogle Scholar
  115. 115.
    Tallqvist H, Henle W, Klemula E, et al. Antibody to EBV at the ages of 6–33 months in children with congenital heart disease. Scand J Infect Dis. 1973; 159: 161.Google Scholar
  116. 116.
    Harris RE. Viral teratogenesis. A review with experimental and clinical perspective. Am J Obstet Gynecol. 1974; 119: 996–1008.PubMedGoogle Scholar
  117. 117.
    Goldberg GN, Fulginiti VA, Ray CG, et al. In utero Epstein-Barr virus (infectious mononucleosis) infection. JAMA. 1981;246:1579– 1581.PubMedGoogle Scholar
  118. 118.
    Leary DC, Welt LG, Beckett RS. Infectious mononucleosis during pregnancy with fatal congenital anomaly of infant. Am J Obstet Gynecol. 1949; 56: 381–384.Google Scholar
  119. 119.
    Brown ZA, Stenchever MA. Infectious mononucleosis and congential anomalies. Am J Obstet Gynecol. 1978; 131: 108–109.PubMedGoogle Scholar
  120. 120.
    Visintine AM, Gerber P, Nahmias AJ. et al. Leukocyte transforming agent (Epstein-Barr virus) in newborn infants and older individuals. J Pediatr. 1976; 89: 571–575.PubMedCrossRefGoogle Scholar
  121. 121.
    Horwitz Ca, McClain K, Henle W, et al. Fatal illness in a 2-week-old infant: Diagnosis by detection of Epstein-Barr virus genomes from a lymph node biopsy. J Pediatr. 1983; 103: 752–755.PubMedCrossRefGoogle Scholar
  122. 122.
    Weaver LT, Nelson R, Bell TM. The association of extrahepatic bile duct atresia and neonatal Epstein-Barr virus infection. Acta Paediatr Scand. 1984; 73: 155–157.PubMedCrossRefGoogle Scholar
  123. 123.
    Henle W, Henle G. Immunology of Epstein- Barr virus. In: Roizman B, ed. the Herpesviruses. New York: Plenum Press; 1982; 1: 209.Google Scholar
  124. 124.
    Sumaya CV. Endogenous reactivation of Epstein-Barr virus infections. J Infect Dis. 1977; 135: 374.PubMedCrossRefGoogle Scholar
  125. 125.
    Andersson J, Ernberg I. Management in Epstein-Barr virus infections. Am J Med. 1988; 88 (suppl 2A): 108–115.Google Scholar
  126. 126.
    Wielaard F, Scherders J, Dagelinckx C, et al. Development of an antibody-capture IgM- enzyme-linked immunoassay for diagnosis of acute Epstein-Barr virus infections. J Virol Methods. 1988; 21: 105–115.PubMedCrossRefGoogle Scholar
  127. 127.
    Linde A, Kallin B, Dillner J, et al. Evaluation of enzyme-linked immunosorbent assays with two synthetic peptides of Epstein-Barr virus for diagnosis of infectious mononucleosis. J Infect Dis. 1990; 161: 903–909.PubMedCrossRefGoogle Scholar
  128. 128.
    Strauss SE, Cohen JI, Tosato G, et al. Epstein-Barr virus infection: Biology, pathogenesis, and management. Ann Intern Med. 1993; 118: 45–58.Google Scholar
  129. 129.
    Chang RS, Blankenship W. Spontaneous in vitro transformation of leukocytes from a neonate. Proc Soc Exp Biol Med. 1973; 144: 337.PubMedGoogle Scholar
  130. 130.
    Pagano JS. Detection of Epstein-Barr virus with molecular hybridization techniques. Rev Infect Dis. 1991; 13 (suppl 1): 5123–5128.CrossRefGoogle Scholar
  131. 131.
    Sixbey JW, Shirley PS. Viral diagnosis using DNA-based probes. Enzymatic amplification of target DNA. Ann NY Acad Sci. 1988; 549: 158.PubMedCrossRefGoogle Scholar
  132. 132.
    Strauss SE. Epstein-Barr virus and human herpesvirus type 6. In: Galasso GJ, Whitely RJ, Merigan TC, eds. Antiviral Agents and Viral Diseases of Man. 3rd ed. New York: Raven Press; 1990: 647–668.Google Scholar
  133. 133.
    Pagano JS, Sixbey JW, Lin JC. Acyclovir and Epstein-Barr virus infection. J Antimicrob Chemother. 1983; 12 (suppl B): 113–121.PubMedGoogle Scholar
  134. 134.
    Andersson J, Britton S, Ernberg I, et al. Effect of acyclovir on infectious mononucleosis: A double-blind, placebo-controlled study. J Infect Dis. 1986; 153: 283–290.PubMedCrossRefGoogle Scholar
  135. 135.
    Andersson J, Skoldenberg B, Henle W, et al. Acyclovir treatment in infectious mononucleosis: A clinical and virological study. Infection. 1987; 15: 14–20.CrossRefGoogle Scholar
  136. 136.
    Van der Horst C, Joncas J, Ahronheim G, et al. Lack of effect of peroral acyclovir for the treatment of infectious mononucleosis. J Infect Dis. 1991; 164: 788–792.PubMedCrossRefGoogle Scholar
  137. 137.
    Morgan AJ. Epstein-Barr virus vaccines. Vaccine. 1992; 10: 563–571.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Kenneth F. TrofatterJr.

There are no affiliations available

Personalised recommendations