Skip to main content

Molecular Biology of Human Androgen Insensitivity Syndrome

  • Conference paper
Function of Somatic Cells in the Testis

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

  • 103 Accesses

Abstract

Testosterone (T) is synthesized and secreted by testicular Leydig cells. High levels of T must be maintained within the seminiferous tubules of the testes to promote and maintain the process of spermatogenesis, whereas relatively lower concentrations of T are available to peripheral tissues from the general circulation. Androgen-dependent target tissues concentrate androgens by means of the specific, high-affinity binding of T and its potent 5α-reduced metabolite, dihydrotestosterone (DHT), to intracellular androgen receptors (AR). The intranuclear binding of the androgen receptor-steroid complex to DNA leads to the regulation of androgen-dependent gene transcription. Early aspects of male sex differentiation and development during the first trimester of fetal life are dependent on the normal biological function of the AR in tissues of the internal male reproductive tract and the external genitalia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown TR, Migeon CJ. Androgen insensitivity syndromes: paradox of phenotypic feminization with male genotype and normal testicular androgen secretion. In: Cohen MP, Foa PP, eds. Hormone resistance and other endocrine paradoxes. New York: Springer-Verlag, 1987:157–203.

    Google Scholar 

  2. Lubahn DB, Joseph DR, Sar M, et al. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis, and gene expression in prostate. Mol Endocrinol 1988;2:1265–75.

    Article  PubMed  CAS  Google Scholar 

  3. Chang C, Kokontis J, Liao S. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors. Proc Natl Acad Sci USA 1988;85:7211–5.

    Article  PubMed  CAS  Google Scholar 

  4. Migeon BR, Brown TR, Axelman J, Rothwell SW, Migeon CJ. Studies on the locus for androgen receptor localization on the human X-chromosome and evidence for homology with the Tfm locus in the mouse. Proc Natl Acad Sci USA 1981;78:6339–43.

    Article  PubMed  CAS  Google Scholar 

  5. Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM. Cloning of human androgen receptor complementary DNA and localization of the X-chromosome. Science 1988;240:327–30.

    Article  PubMed  CAS  Google Scholar 

  6. Brown CJ, Gross SJ, Lubahn DB, et al. Androgen receptor locus on the human X-chromosome: regional localization of Xqll-12 and description of a DNA polymorphism. Am J Hum Genet 1989;44:264–9.

    PubMed  CAS  Google Scholar 

  7. Rundlett SE, Wu S-P, Miesfield RL. Functional characterization of the androgen receptor confirms that the molecular basis of androgen action is transcriptional regulation. Mol Endocrinol 1990;4:708–14.

    Article  PubMed  CAS  Google Scholar 

  8. Simental JA, Sar M, Lane MV, French FS, Wilson EM. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem 1991;266:510–8.

    PubMed  CAS  Google Scholar 

  9. Jenster G, van der Korput HAGM, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkman AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation and subcellular localization. Mol Endocrinol 1991;5:1396–404.

    Article  PubMed  CAS  Google Scholar 

  10. Lubahn DB, Brown TR, Simental JA, et al. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity. Proc Natl Acad Sci USA 1989;86:9534–8.

    Article  PubMed  CAS  Google Scholar 

  11. Brown TR, Lubahn DB, Wilson EM, Joseph DR, French FS, Migeon CJ. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: evidence for further genetic heterogeneity in this syndrome. Proc Natl Acad Sci USA 1988;85:8151–5.

    Article  PubMed  CAS  Google Scholar 

  12. Brown TR, Lubahn DB, Wilson EM, French FS, Migeon CJ, Corden JL. Functional characterization of naturally occurring mutant androgen receptors from patients with complete androgen insensitivity. Mol Endocrinol 1990; 4:1759–72.

    Article  PubMed  CAS  Google Scholar 

  13. Trifiro M, Gottleib B, Pinsky L, et al. The 56/58kDa androgen-binding protein in male genital skin fibroblasts with a deleted androgen receptor gene. Mol Cell Endocrinol 1991;75:37–47.

    Article  PubMed  CAS  Google Scholar 

  14. Quigley CA, Friedman KJ, Johnson A, et al. Complete deletion of the androgen receptor gene: definition of the null phenotype of the androgen insensitivity syndrome and determination of carrier status. J Clin Endocrinol Metab 1992;74:927–33.

    Article  PubMed  CAS  Google Scholar 

  15. French FS, Lubahn DB, Brown TR, et al. Molecular basis of androgen insensitivity. Recent Prog Horm Res 1990;46:1–42.

    PubMed  CAS  Google Scholar 

  16. MacLean HE, Chu S, Warne GL, Zajac JD. Related individuals with different androgen receptor gene deletions. J Clin Invest 1993;91:1123–8.

    Article  PubMed  CAS  Google Scholar 

  17. Quigley CA, Evans BA, Simental JA, et al. Complete androgen insensitivity due to deletion of exon C of the androgen receptor gene highlights the functional importance of the second zinc finger of the androgen receptor in vivo. Mol Endocrinol 1992;6:1103–12.

    Article  PubMed  CAS  Google Scholar 

  18. Fischer S, Lerman L. DNA fragments differing by single-base-pair substitutions are separated in denaturing gradient gel: correspondence with melting theory. Proc Natl Acad Sci USA 1983;80:1579–83.

    Article  PubMed  CAS  Google Scholar 

  19. Myers RM, Lerman LS, Fischer SG, Maniatis T. Modification of the melting properties of duplex DNA by denaturing gradient gel electrophoresis. Nucleic Acids Res 1985;13:3111–29.

    Article  PubMed  CAS  Google Scholar 

  20. Sheffield V, Cox DR, Lerman LS, Myers RM. Attachment of a GC-clamp to genomic DNA fragments by the polymerase chain reaction results in improved detection of single base changes. Proc Natl Acad Sci USA 1989; 86:232–6.

    Article  PubMed  CAS  Google Scholar 

  21. Theophilius BDM, Latham T, Gabrowski GA, Smith FI. Comparison of RNase A, a chemical cleavage and GC-clamped denaturing gradient gel electrophoresis for the detection of mutations in exon 9 of the human acid β-glucosidase gene. Nucleic Acids Res 1989;19:7707–22.

    Article  Google Scholar 

  22. Traystman MD, Higuchi M, Kasper CK, Antonarakis SE, Kazazian HH Jr. Use of denaturing gradient gel electrophoresis to detect point mutations in the factor VIII gene. Genomics 1990;6:293–301.

    Article  PubMed  CAS  Google Scholar 

  23. Wong C, Dowling CD, Saiki RK, Higuchi RG, Erlich HA, Kazazian HH Jr. Characterization of β-thalassemia mutations using direct genomic sequencing of amplified single copy DNA. Nature 1987;330:384–6.

    Article  PubMed  CAS  Google Scholar 

  24. Ris-Stalpers C, Kuiper GGJM, Faber PW, et al. Aberrant splicing of androgen receptor mRNA results in the synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity. Proc Natl Acad Sci USA 1990; 87:7866–70.

    Article  PubMed  CAS  Google Scholar 

  25. McPhaul MJ, Marcelli M, Tilley WD, Griffin JE, Wilson JD. Androgen resistance caused by mutations in the androgen receptor gene. FASEB J 1991;5:2910–5.

    PubMed  CAS  Google Scholar 

  26. Pinsky L, Trifiro M, Kaufman M, et al. Androgen resistance due to mutation of the androgen receptor. Clin Invest Med 1992;15:65–81.

    Google Scholar 

  27. Zoppi S, Wilson CM, Harbison MD, et al. Complete testicular feminization caused by an amino-terminal truncation of the androgen receptor with downstream initiation. J Clin Invest 1993;91:1105–12.

    Article  PubMed  CAS  Google Scholar 

  28. Yarbrough WG, Quarmby VE, Simental JA, et al. A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. J Biol Chem 1990;265:8893–900.

    PubMed  CAS  Google Scholar 

  29. Amrhein JA, Meyer WJ III, Jones HW Jr, Migeon CJ. Androgen insensitivity in man: evidence for genetic heterogeneity. Proc Natl Acad Sci USA 1976;73:891–4.

    Article  PubMed  CAS  Google Scholar 

  30. Brown TR, Maes M, Rothwell SW, Migeon CJ. Human complete androgen insensitivity with normal dihydrotestosterone receptor binding capacity in cultured genital skin fibroblasts: evidence for a qualitative abnormality of the receptor. J Clin Endocrinol Metab 1982;55:61–9.

    Article  PubMed  CAS  Google Scholar 

  31. Chang YT, Migeon CJ, Brown TR. Human androgen insensitivity syndrome due to androgen receptor gene point mutations in subjects with normal androgen receptor levels but impaired biological activity [Abstract 28]. 73rd annu meet Endocr Soc, 1991.

    Google Scholar 

  32. Griffin JE. Testicular feminization associated with a thermolabile androgen receptor in cultured human fibroblasts. J Clin Invest 1979;64:1624–31.

    Article  PubMed  CAS  Google Scholar 

  33. Kaufman M, Pinsky L, Feder-Hollander R. Defective up-regulation of the androgen receptor in human androgen insensitivity. Nature 1981;293:735–7.

    Article  PubMed  CAS  Google Scholar 

  34. Griffin JE, Durrant JL. Qualitative defects in families with androgen resistance: failure of stabilization of the fibroblast cytosol androgen receptor. J Clin Endocrinol Metab 1982;55:465–74.

    Article  PubMed  CAS  Google Scholar 

  35. Amrhein JA, Klingensmith G, Walsh PC, McKusick VA, Migeon CJ. Partial androgen insensitivity: the Reifenstein syndrome revisited. N Engl J Med 1977;297:350–6.

    Article  PubMed  CAS  Google Scholar 

  36. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:77–9.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Brown, T.R. et al. (1994). Molecular Biology of Human Androgen Insensitivity Syndrome. In: Bartke, A. (eds) Function of Somatic Cells in the Testis. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2638-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2638-3_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7619-7

  • Online ISBN: 978-1-4612-2638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics