Skip to main content

Regulation of the Cyclic Nucleotide-Dependent Pathway in Seminiferous Tubule Cells

  • Conference paper
Function of Somatic Cells in the Testis

Abstract

It is well established that the development and maturation of the male gamete is dependent on germ cell interaction with somatic cells (1–3). Thus, in the protected environment of the seminiferous tubules, germ cells and somatic cells are continuously exchanging the signals necessary to integrate their functions. In the last 15 years, there has been a major effort to elucidate the biochemical nature of the signals mediating these cell-to-cell interactions (3–5). One concept that has emerged from these studies is that the mechanisms of signal transduction must be operating in seminiferous tubule cells. These mechanisms are necessary for somatic and germ cells to receive and elaborate extracellular signals (6) and to translate them into changes in cell function. Activation of signal transduction pathways must also play an important role in mediating another cell-cell interaction, that between the spermatozoon and the oocyte (7, 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberger A, Steinberger E. Spermatogenic function of the testis. In Greep RO, Astwood EB, eds. Handbook of physiology. Baltimore, MD: Williams and Wilkins, 1975:1–19.

    Google Scholar 

  2. Russell LD. Sertoli-germ cell interrelations: a review. Gamete Res 1980;3: 179–202.

    Article  Google Scholar 

  3. Stefanini M, Conti M, Geremia R, Ziparo E. Regulation of mammalian spermatogenesis. In: Metz CB, Monroy A, eds. Biology of fertilization. New York: Academic Press, 1980:59–102.

    Google Scholar 

  4. Ritzen EM. Chemical messengers between Sertoli cells and neighboring cells. J Steroid Biochem 1983;49:499–504.

    Article  Google Scholar 

  5. Skinner MK. Cell-cell interactions in the testis. Endocr Rev 1991;12:45–77.

    Article  PubMed  CAS  Google Scholar 

  6. Conti M, Monaco L. Modulatory mechanisms of the hormonal response of testicular cells. In: Stefanini M, Conti M, Geremia R, Ziparo E, eds. Molecular and cellular endocrinology of the testis. Amsterdam: Excerpta Medica, 1986:89–100.

    Google Scholar 

  7. Garbers DL. The regulation of sperm function by the egg. In: Schatten H, Schatten G, eds. The molecular biology of fertilization. New York: Academic Press, 1989:3–16.

    Google Scholar 

  8. Wasserman PM. Early events in mammalian fertilization. Annu Rev Cell Biol 1987;3:109–42.

    Article  Google Scholar 

  9. Means AR, Dedman JR, Tash JS, Tindall DJ, van Sickle M, Welsh MJ. Regulation of the testis Sertoli cell by follicle stimulating hormone. Annu Rev Physiol 1980;42:59–69.

    Article  PubMed  CAS  Google Scholar 

  10. Maller JL. Interaction of steroids with the cyclic nucleotide system in amphibian oocytes. Adv Cyclic Nucl Res 1983;15:295–336.

    CAS  Google Scholar 

  11. O’Dowd BF, Lefkowitz RJ, Caron MG. Structure of the adrenergic and related receptors. Annu Rev Neurosci 1989;12:67–83.

    Article  PubMed  Google Scholar 

  12. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987;56:615–49.

    Article  PubMed  CAS  Google Scholar 

  13. Spiegel AM. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endocrinol 1987;49:1–16.

    Article  PubMed  CAS  Google Scholar 

  14. Krupinski J, Coussen F, Bakalyar HA, et al. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 1989;244: 1558–64.

    Article  PubMed  CAS  Google Scholar 

  15. Beavo JA. Multiple isozymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res 1988;22:1–38.

    PubMed  CAS  Google Scholar 

  16. Conti M, Jin SLC, Monaco L, Repaske D, Swinnen JV. Hormonal regulation of cyclic nucleotide phosphodiesterases. Endocr Rev 1991;12:218–34.

    Article  PubMed  CAS  Google Scholar 

  17. Barber R, Clark RB, Kelly LA, Butcher RW. A model of desensitization in intact cells. Adv Cyclic Nucl Res 1978;9:507–16.

    CAS  Google Scholar 

  18. Swinnen JV, D’Souza B, Conti M, Ascoli M. Modulation of MA-10 Leydig tumor cell responsiveness by genetic manipulation of a cAMP-phosphodiesterase. J Biol Chem 1991;266:14383–9.

    PubMed  CAS  Google Scholar 

  19. Beavo JA, Reifsnyder DH. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and design of selective inhibitors. TIPS 1990;11: 150–4.

    PubMed  CAS  Google Scholar 

  20. Parmentier M, Libert F, Schurmans S, et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 1992;3:453–5.

    Article  Google Scholar 

  21. Meyerhof W, Muller-Brechlin R, Richter D. Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. FEBS Lett 1991;284:155–60.

    Article  PubMed  CAS  Google Scholar 

  22. Braun T. Evidence for multiple, cell-specific, distinctive adenylate cyclase systems in rat testis. In: Dufau ML, Means AR, eds. Hormone binding and target cell activation in the testis. 1974:243–64.

    Google Scholar 

  23. Neer EJ. Physical and functional properties of adenylate cyclase from mature rat testis. J Biol Chem 1978;253:5808–12.

    PubMed  CAS  Google Scholar 

  24. Adamo S, Conti M, Geremia R, Monesi V. Particulate and soluble adenylate cyclase activities of mouse male germ cells. Biochem Biophys Res Commun 1980;97:607–13.

    Article  PubMed  CAS  Google Scholar 

  25. Gordeladze JO, Hansson V. Purification and kinetic properties of the soluble, Mn++ dependent adenylate cyclase of rat testis. Mol Cell Endocrinol 1981; 23:125–36.

    Article  PubMed  CAS  Google Scholar 

  26. Kopf GS, Woolkalis MJ, Gerton GL. Evidence for a guanine nucleotide-binding regulatory protein in invertebrate and mammalian sperm: identification by islet-activating protein-catalyzed ADP-ribosylation and immunochemical methods. J Biol Chem 1986;261:7327–31.

    PubMed  CAS  Google Scholar 

  27. Paulsen RH, Paulssen EJ, Gordeladze JO, Hansson V, Haugen TB. Cell-specific expression of guanine nucleotide-binding proteins in rat testicular cells. Biol Reprod 1991;45:566–71.

    Article  Google Scholar 

  28. Karnik NS, Newman S, Kopf GS, Gerton GL. Developmental expression of G protein a-subunits in mouse spermatogenic cells: evidence that Ga1 is associated with the developing acrosome. Dev Biol 1992;152:393–402.

    Article  PubMed  CAS  Google Scholar 

  29. Pitt GS, Milona N, Borleis J, Lin KC, Reed RR, Devreotes PN. Structurally distinct and stage-specific adenyl cyclase genes play different roles in dictyo-stelium development. Cell 1992;69:305–15.

    Article  PubMed  CAS  Google Scholar 

  30. Hurley JB. Molecular properties of the cGMP cascade of vertebrate photoreceptors. Annu Rev Physiol 1987;49:793–812.

    Article  PubMed  CAS  Google Scholar 

  31. Geremia R, Rossi P, Pezzotti R, Conti M. Cyclic nucleotide phosphodiesterase in developing rat testis: identification of somatic and germ-cell forms. Mol Cell Endocrinol 1982;28:37–53.

    Article  PubMed  CAS  Google Scholar 

  32. Rossi P, Pezzotti R, Conti M, Geremia R. Cyclic nucleotide phosphodiesterases in somatic and germ cells of mouse seminiferous tubules. J Reprod Fertil 1985;74:317–27.

    Article  PubMed  CAS  Google Scholar 

  33. Geremia R, Rossi P, Mocini D, Pezzotti R, Conti M. Characterization of calmodulin-dependent high affinity cyclic AMP and cGMP phosphodiesterase from male mouse germ cells. Biochem J 1984;217:693–700.

    PubMed  CAS  Google Scholar 

  34. Swinnen JV, Joseph DR, Conti M. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci USA 1989;86:5325–9.

    Article  PubMed  CAS  Google Scholar 

  35. Swinnen JV, Joseph DR, Conti M. The mRNA encoding a high affinity cAMP phosphodiesterase is regulated by hormones and cAMP. Proc Natl Acad Sci USA 1989;86:8197–201.

    Article  PubMed  CAS  Google Scholar 

  36. Davis RL, Takaysasu H, Eberwine M, Myres J. Cloning and characterization of mammalian homologs of the Drosophila dunce+ gene. Proc Natl Acad Sci USA 1989;86:3604–8.

    Article  PubMed  CAS  Google Scholar 

  37. Colicelli J, Birchmeier C, Michaeli T, O’Neill K, Riggs M, Wigler M. Isolation and characterization of a mammalian gene encoding a high-affinity cAMP phosphodiesterase. Proc Natl Acad Sci USA 1989;86:3599–603.

    Article  PubMed  CAS  Google Scholar 

  38. Bentley KJ, Kadlecek A, Sherbert CH, et al. Molecular cloning of cDNA encoding a 63-kDa calmodulin-stimulated phosphodiesterase from bovine brain. J Biol Chem 1992;267:18676–82.

    PubMed  CAS  Google Scholar 

  39. Repaske DS, Swinnen JV, Jin CS, Van Wyk JJ, Conti M. A polymerase chain reaction strategy to identify and clone cyclic nucleotide phosphodiesterases: molecular cloning of a 63kDa calmodulin-dependent phosphodiesterase. J Biol Chem 1992;267:18683–8.

    PubMed  CAS  Google Scholar 

  40. Polli JW, Kincaid RL. Molecular cloning of DNA encoding a calmodulin-dependent phosphodiesterase enriched in striatum. Proc Natl Acad Sci USA 1992;89:11079–83.

    Article  PubMed  CAS  Google Scholar 

  41. Sonnenburg WK, Seger D, Beavo JA. Molecular cloning of a cDNA encoding the “61-kDa” calmodulin-stimulated cyclic nucleotide phosphodiesterase: tissue-specific expression of structurally related isoforms. J Biol Chem 1993; 268:645–52.

    PubMed  CAS  Google Scholar 

  42. Sharma RK, Wang JH. Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci USA 1985;82:2603–7.

    Article  PubMed  CAS  Google Scholar 

  43. Rossi P, Giorgi M, Geremia R, Kinkaid R. Testis-specific calmodulin-dependent phosphodiesterase. J Biol Chem 1988;263:15521–7.

    PubMed  CAS  Google Scholar 

  44. Livi GP, Kmetz P, McHale MM, et al. Cloning and expression of a cDNA for a human low-Km rolipram-sensitive cyclic AMP phosphodiesterase. Mol Cell Biol 1990;10:2678–86.

    PubMed  CAS  Google Scholar 

  45. McLaughlin MM, Cieslinski LB, Burman M, Torphy TJ, Livi GP. A low-Km, rolipram-sensitive, cAMP-specific phosphodiesterase from human brain. Cloning and expression of cDNA, biochemical characterization of recombinant protein, and tissue distribution of mRNA. J Biol Chem 1993;268: 6470–6.

    PubMed  CAS  Google Scholar 

  46. Chen CN, Denome S, Davis RL. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc Natl Acad Sci USA 1986;83:9313–7.

    Article  PubMed  CAS  Google Scholar 

  47. Davis RL, Kiger JA. A partial characterization of the cyclic nucleotide phosphodiesterase of Drosophila melanogaster. Arch Biochem Biophys 1980; 203:412–21.

    Article  PubMed  CAS  Google Scholar 

  48. Bellen HJ, Gregori BK, Olsson CL, Kiger JA. Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis. Dev Biol 1987;121:432–44.

    Article  PubMed  CAS  Google Scholar 

  49. Salz HK, Davis RL, Kiger JA. Genetic analysis of chromosome 3D4: the dunce and sperm-amotile genes of Drosophila melanogaster. Genetics 1982; 100:587–96.

    PubMed  CAS  Google Scholar 

  50. Welch JE, Swinnen JV, O’Brien DA, Eddy EM, Conti M. Unique adenosine 3′,5′ cyclic monophosphate phosphodiesterase messenger ribonucleic acids in rat spermatogenic cells: evidence for differential gene expression during spermatogenesis. Biol Reprod 1992;46:1027–33.

    Article  PubMed  CAS  Google Scholar 

  51. Waeber G, Meyer TE, LeSieur M, Hermann HL, Gerard N, Habener JF. Developmental stage-specific expression of cyclic adenosine 3′-5′-monophosphate response element-binding protein CREB during spermatogenesis involves alternate exon splicing. Mol Endocrinol 1991;5:1418–30.

    Article  PubMed  CAS  Google Scholar 

  52. Tash JS, Means AR. Cyclic adenosine 3′5′ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 1983;28:75–104.

    Article  PubMed  CAS  Google Scholar 

  53. Austin CR. Sperm maturation in the male and female genital tracts. In: Metz CB, Monroy A, eds. Biology of fertilization. New York: Academic Press, 1985:121–55.

    Google Scholar 

  54. Garbers DL, Lust WD, First NL, Lardy HA. Effects of phosphodiesterase inhibitors and cyclic nucleotides on sperm respiration and motility. Biochemistry 1971;10:1825–31.

    Article  Google Scholar 

  55. Hoskins DD, Hall ML, Munsterman D. Induction of motility in immature spermatozoa by cyclic AMP phosphodiesterase inhibitors and seminal plasma. Biol Reprod 1975;13:168–76.

    Article  PubMed  CAS  Google Scholar 

  56. Fraser LR. Mechanisms controlling mammalian fertilisation. Oxf Rev Reprod Biol 1984;6:174–225.

    PubMed  CAS  Google Scholar 

  57. Wasco WM, Orr GA. Function of calmodulin in mammalian sperm: presence of a calmodulin-dependent cyclic nucleotide phosphodiesterase associated with demembranated rat caudal epididymal sperm. Biochem Biophys Res Commun 1984;118:636–42.

    Article  PubMed  CAS  Google Scholar 

  58. Horowitz JA, Toeg H, Orr GA. Characterization and localization of cAMP-dependent protein kinase in rat caudal epididymal sperm. J Biol Chem 1984;259:832–8.

    PubMed  CAS  Google Scholar 

  59. Hall SH, Joseph DR, French FS, Conti M. Follicle stimulating hormone induces transient expression of the proto-oncogene c-fos in primary Sertoli cell cultures. Mol Endocrinol 1988;2:55–61.

    Article  PubMed  CAS  Google Scholar 

  60. Verhoeven G, Cailleau J, de Moor P. Desensitization of cultured rat Sertoli cells by follicle-stimulating hormone and by L-isoproterenol. Mol Cell Endocrinol 1980;20:113–26.

    Article  PubMed  CAS  Google Scholar 

  61. Attramadal H, Le Gac F, Jahnsen T, Hansson V. β-adrenergic regulation of Sertoli cell adenylyl cyclase: desensitization by homologous hormone. Mol Cell Endocrinol 1984;34:1–6.

    Article  PubMed  CAS  Google Scholar 

  62. Conti M, Toscano MV, Petrelli L, Geremia R, Stefanini M. Involvement of phosphodiesterase in the refractoriness of the Sertoli cell. Endocrinology 1983;113:1845–53.

    Article  PubMed  CAS  Google Scholar 

  63. Swinnen JV, Tsikalas K, Conti M. Properties and hormonal regulation of two structurally related cAMP-phosphodiesterases from the rat Sertoli cell. J Biol Chem 1991;266:18370–7.

    PubMed  CAS  Google Scholar 

  64. Conti M, Monaco L, Geremia R, Stefanini M. Effect of phosphodiesterase inhibitors on Sertoli cell refractoriness: reversal of the impaired androgen aromatization. Endocrinology 1986;118:901–8.

    Article  PubMed  CAS  Google Scholar 

  65. Kozac M. An analysis of vertebrate mRNA sequences: intimations of transitional control. J Cell Biol 1991;115:887–903.

    Article  Google Scholar 

  66. Conti M, Toscano MV, Geremia R, Stefanini M. Follicle-stimulating hormone regulates in vivo testicular phosphodiesterase. Mol Cell Endocrinol 1983; 29:73–89.

    Article  Google Scholar 

  67. Steinberger A, Hintz M, Heindel JJ. Changes in cAMP responses to FSH in isolated rat Sertoli cells during sexual maturation. Biol Reprod 1978; 19: 566–72.

    Article  PubMed  CAS  Google Scholar 

  68. Van Sickle M, Oberwetter JM, Birnbaumer L, Means AR. Developmental changes in the hormonal regulation of rat testis Sertoli cell adenylyl cyclase. Endocrinology 1981;109:1270–80.

    Article  PubMed  Google Scholar 

  69. Heindel JJ, Clark RB. Loss of hormonal stimulation of Sertoli cell adenylate cyclase with testis maturation. Ann NY Acad Sci 1982;383:460–1.

    Article  CAS  Google Scholar 

  70. Fakunding JL, Tindall DJ, Dedman JR, Mena CR, Means AR. Biochemical actions of follicle-stimulating hormone in the Sertoli cell of the rat testis. Endocrinology 1976;98:392–402.

    Article  PubMed  CAS  Google Scholar 

  71. Weishaar RE, Cain ME, Bristol JA. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterases and the potential for drug selectivity. J Med Chem 1985;28:537–45.

    Article  PubMed  CAS  Google Scholar 

  72. Nicholson CD, Challis RAJ, Shahid M. Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci 1991;12:19–24.

    Article  PubMed  CAS  Google Scholar 

  73. Parvinen M. Regulation of the seminiferous epithelium. Endocr Rev 1982; 3:404–17.

    Article  PubMed  CAS  Google Scholar 

  74. Kangasniemi M, Kaipia A, Toppari J, Mali P, Huhtaniemi I, Parvinen M. Cellular regulation of basal and FSH-stimulated cyclic AMP production in irradiated rat testes. Anat Rec 1990;227:32–6.

    Article  PubMed  CAS  Google Scholar 

  75. Heckert LL, Griswold MD. Expression of follicle-stimulating hormone receptor mRNA in rat testes and Sertoli cells. Mol Endocrinol 1991;5:670–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Conti, M. et al. (1994). Regulation of the Cyclic Nucleotide-Dependent Pathway in Seminiferous Tubule Cells. In: Bartke, A. (eds) Function of Somatic Cells in the Testis. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2638-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2638-3_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7619-7

  • Online ISBN: 978-1-4612-2638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics