Genetics and Luteinizing Hormone Receptors

  • Armando G. Amador
  • Artur Mayerhofer
  • Andrzej Bartke
Conference paper
Part of the Serono Symposia, USA book series (SERONOSYMP)


Testicular luteinizing hormone receptors (LH-Rs) that bind either LH or human chorionic gonadotropin (hCG) are required for the differentiation of the Leydig cell (1). This is indicated by the correlation between the onset of Leydig cell differentiation and the appearance of hCG during the development of the human fetus. The number of Leydig cells also correlates with the levels of hCG during pregnancy. Leydig cells, and therefore LH-Rs, are present by week 8 of pregnancy in the human (2–4), and by day 15 in rodents (5).


Luteinizing Hormone Sertoli Cell Leydig Cell Stem Cell Factor Syrian Hamster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartz M, Imperato-McGinley J, Peterson RE, et al. Male pseudohermaphroditism secondary to an abnormality in Leydig cell differentiation. J Clin Endocrinol Metab 1981;53:123–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Pelliniemi LJ, Niemi M. Fine structure of the human foetal testis, I. The interstitial tissue. Z Zeilforsch 1969;99:507–22.CrossRefGoogle Scholar
  3. 3.
    Huhtaniemi I, Pelliniemi LJ. Fetal Leydig cells: cellular origin, morphology, life span, and special functional features. Proc Soc Exp Biol Med 1992;201: 125–40.PubMedGoogle Scholar
  4. 4.
    Vuotilainen R. Differentiation of the fetal gonad. Horm Res 1992;38(suppl 1):66–71.CrossRefGoogle Scholar
  5. 5.
    Niemi M, Ikonen M. Steroid-3beta-ol-dehydrogenase activity in foetal Leydig’s cells. Nature 1961;189:592–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Rousseau-Merck MF, Misrahi M, Atger M, Loosfelt H, Milgrom E, Berger R. Localisation of the human luteinizing hormone/choriogonadotropin receptor gene (LHCGR) to chromosome 2p21. Cytogenet Cell Genet 1990; 54:77–9.PubMedCrossRefGoogle Scholar
  7. 7.
    O’Brien SJ, Graves JAM. Report of the committee on comparative gene mapping. Cytogenet Cell Genet 1991;58:1124–51.CrossRefGoogle Scholar
  8. 8.
    Libert F, Vassart G, Parmentier M. Current developments in G-protein-coupled receptors. Curr Opin Cell Biol 1991;3:218–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Coumbarnous Y. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocr Rev 1992;13:670–91.Google Scholar
  10. 10.
    Bohnet HG, Friesen HG. Effect of prolactin and growth hormone on prolactin and LH receptors in the dwarf mouse. J Reprod Fertil 1976;48:307–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Amador AG, Bartke A. Regulation of testicular human chorionic gonadotrophin binding in prolactin-deficient Snell dwarf mice. J Endocrinol 1982; 95:301–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Roux M, Bartke A, Dumont F, Dubois MP. Immunohistological study of the anterior pituitary gland—pars distalis and pars intermedia—in dwarf mice. Cell Tissue Res 1982;223:415–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Camper SA, Saunders TL, Katz RW, Reeves RH. The Pit-1 transcription factor gene is a candidate for the murine Snell dwarf mutation. Genomics 1990;8:586–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Li S, Crenshaw EB III, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990;347:528–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Amador AG, Bartke A, Beamer WG, Siler-Khodr TM. Autoregulation of testicular LH receptors in Ames dwarf (df/df) and pigmy (pg/pg) mice. Endocrinol Exp 1988;22:87–97.PubMedGoogle Scholar
  16. 16.
    Amador AG, Parkening TA, Beamer WG, Bartke A, Collins TJ. Testicular LH receptors and circulating hormone levels in three mouse models for inherited diseases (Tfm/y, lit/lit and hyt/hyt). Endocrinol Exp 1986;20: 349–58.PubMedGoogle Scholar
  17. 17.
    Amador AG, Mayerhofer A, Bartke A. Mice with inherited or surgically induced hypothyroidism. Mouse News Lett 1988;81:87.Google Scholar
  18. 18.
    Amador A, Parkening T, Beamer W, Bartke A, Collins TJ. Autoregulation of testicular luteinizing hormone receptors in hypogonadal (hpg/hpg) mice. Biochem Genet 1984;22:395–401.PubMedCrossRefGoogle Scholar
  19. 19.
    Huhtaniemi I. Gonadotrophin receptors: correlates with normal and pathological functions of the human ovary and testis. Clin Endocrinol Metab 1983;12:117–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Stallings MH, Matt KS, Amador A, et al. Regulation of testicular LH/hCG receptors in golden hamsters (Mesocricetus auratus) during development. J Reprod Fertil 1985;75:663–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Beamer WG, Cunliffe-Bearner TL, Shultz KL, Langley SH, Roderick TH. Juvenile spermatogonial depletion (jsd): a genetic defect of germ cell proliferation of male mice. Biol Reprod 1988;38:899–908.PubMedCrossRefGoogle Scholar
  22. 22.
    Mizunuma M, Dohmae K, Taj ima Y, Koshimizu U, Watanabe D, Nishimune Y. Loss of sperm in juvenile spermatogonial depletion (jsd) mutant mice is ascribed to a defect of intratubular environment to support germ cell differentiation. J Cell Physiol 1992;150:188–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Amador A, Beamer WG, Bartke A. Evidence for a second locus (jsd) involved in regulating testicular LH receptor levels in mice. Genetics 1986; 113:s2.Google Scholar
  24. 24.
    Amador A, Parkening T, Beamer W, Bartke A, Collins TJ. Effects of alleles at the W locus on testicular luteinizing hormone receptors in adult mice. J Recept Res 1984;4:741–53.PubMedGoogle Scholar
  25. 25.
    Amador AG, Bartke A, Hodges SL. A new allele (Sl d) involved in the regulation of testicular LH receptors and consequently, testosterone production in the mouse. Genome 1988;30(suppl 1):259.Google Scholar
  26. 26.
    Amador AG, Bartke A, Parkening TA, et al. Hormonal regulation of testicular human chorionic gonadotropin binding and steroidogenesis in adult mice with different forms of hereditary diabetes and obesity. Horm Res 1986;23:215–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Amador AG, Esquifino AI, Wolff GL, Mayerhofer A, Steger RW, Bartke A. Effects of a diabetogenic allele of the a locus on Leydig cell function in mice. In: Monduzzi, ed. Proc IV Int Cong Androl, S.p.A., Bologna, 1989: 1–4.Google Scholar
  28. 28.
    Amador AG, Mayerhofer A, Bartke A, et al. Further studies on Leydig cell function in viable yellow (Avy/a) mice. Mouse Genome 1990;86: 257–8.Google Scholar
  29. 29.
    Amador A, Bartke A, Klemcke H, Dung HC. Pituitary and testicular function in lethargic mice. Indian J Com Anim Physiol 1983;1:34–8.Google Scholar
  30. 30.
    Wilkinson M. Abnormal gonadotrophin release from pituitaries of muscular dystrophic mice and hamsters. J Reprod Fertil 1984;71:463–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Amador AG, Mayerhofer A, Parkening TA, Collins TJ, Bartke A. Differential effects of two alleles of the dy locus on the pituitary-testicular axis of mice. Rev Esp Fisiol 1992;48:157–66.PubMedGoogle Scholar
  32. 32.
    Amador AG, Mayerhofer A, Bartke A, Steger RW. Transgenic mice expressing the gene for human growth hormone. Mouse News Lett 1989; 83:183–4.Google Scholar
  33. 33.
    Klemcke HG, Bartke A. Effect of chronic hyperprolactinemia in mice on plasma gonadotropin concentrations and testicular human chorionic gonadotropin binding sites. Endocrinology 1981;108:1763–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Lin T, Haskell H, Vinson N, Terracio L. Direct stimulatory effects of insulin-like growth factor on Leydig cell steroidogenesis in primary culture. Biochem Biophys Res Commun 1986a;137:950–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Lin T, Haskell H, Vinson N. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology 1986b;119: 1641–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Amador AG, Mayerhofer A, Bartke A, Steger RW, Wagner TE, Yun JS. Testicular function in transgenic mice expressing the gene for the bovine growth hormone. Mouse Genome 1990;86:257.Google Scholar
  37. 37.
    Amador AG, Bartke A, Mayerhofer A, Wagner TE, Yun JS. Testicular function in transgenic mice expressing the gene for the human growth hormone II (variant or placental growth hormone). Mouse Genome 1990; 87:99.Google Scholar
  38. 38.
    MacLeod J, Worsley I, Ray J, Friesen H, Liebhaber S, Cooke N. Human growth hormone-variant is a biologically active somatogen and lactogen. Endocrinology 1991;128:1298–302.PubMedCrossRefGoogle Scholar
  39. 39.
    Amador A, Klemcke HG, Bartke A, Soares MJ, Siler-Khodr TM, Talamantes F. Effects of different numbers of ectopic pituitary transplants on regulation of testicular LH/hCG and prolactin receptors in the hamster (Mesocricetus auratus). J Reprod Fertil 1985;73:483–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Amador A, Bartke A, Mayerhofer A, Shire JGM, Wagner TE, Yun JS. Testicular function in transgenic mice expressing a gene construct for the bovine growth hormone that includes a PEPCK promoter. Mouse Genome 1991;89:264–5.Google Scholar
  41. 41.
    Amador A, Bartke A, Beamer W. Genetic variation in testicular LH receptors in the mouse. Endocr Res Comm 1982;9:79–88.CrossRefGoogle Scholar
  42. 42.
    Amador AG, Bartke A, Parkening TA, Chamness GC. Genetic differences in androgen receptors and in autoregulation of testicular human chorionic gonadotropin binding sites in the mouse. J Recept Res 1983;3:495–512.PubMedGoogle Scholar
  43. 43.
    Amador AG, Parkening TA, Collins TJ, Bartke A, Silverman AY. Differences in testicular LH receptors and steroidogenesis between two stocks of outbred Swiss mice. Adv Contracept 1987;3:29–33.Google Scholar
  44. 44.
    Stalvey JRD, Payne AH. Luteinizing hormone receptors and testosterone production in whole testes and purified Leydig cells from the mouse: differences among inbred strains. Endocrinology 1983;112:1696–701.PubMedCrossRefGoogle Scholar
  45. 45.
    Spearow JL, Bradford GE. Genetic variation in spontaneous ovulation rate and LH receptor induction in mice. J Reprod Fertil 1983;69:529–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Spearow JL. The mechanism of action of genes controlling reproduction. In: Land RB, Robinson DW, eds. Genetics of reproduction in sheep. London: Butterworths, 1985:203–15.Google Scholar
  47. 47.
    lams SG, McMurtry JP, Wexler BC. Aldosterone, deoxycorticosterone, corticosterone, and prolactin changes during the lifespan of chronically and spontaneously hypertensive rats. Endocrinology 1979;104:1357–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Hodson CA, Louis TM, Burden HW, lams SG. Serum gonadotropin and prolactin levels in young and old spontaneously hypertensive rats. IRCS Med Sci 1981;9:321.Google Scholar
  49. 49.
    Amador A, Steger RW, Bartke A, Johns A, Hayashi RH, Stallings MH. Pituitary and testicular function in spontaneously hypertensive rats. J Androl 1983;4:67–70.PubMedGoogle Scholar
  50. 50.
    Sharpe RM, McNeilly AS. The effect of induced hyperprolactinemia on Leydig cell function and LH-induced loss of LH receptors in the rat testis. Mol Cell Endocrinol 1979;16:19–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Amador AG, Esquifino AI, Bartke A, et al. Effects of diethylstilboestrol on testicular function and luteinizing hormone receptors. Rev Esp Fisiol 1989; 45:245–54.PubMedGoogle Scholar
  52. 52.
    Thompson S, Huseby RA, Fox MA, Davis CL, Hunt RD. Spontaneous tumors in the Sprague-Dawley rat. J Natl Cancer Inst 1961;27:1037–57.PubMedGoogle Scholar
  53. 53.
    Jacobs BB, Huseby RA. Neoplasms occuring in aged Fisher rats, with special reference to testicular, uterine and thyroid tumors. J Natl Cancer Inst 1967;39:303–9.PubMedGoogle Scholar
  54. 54.
    Walsh PC. The endocrinology of testicular tumors. Recent Results Cancer Res 1979;60:196–201.Google Scholar
  55. 55.
    Amador A, Steger RW, Bartke A, et al. Testicular LH receptors during aging in Fisher 344 rats. J Androl 1985;6:61–4.PubMedGoogle Scholar
  56. 56.
    Sweeney C, Castrecane D, Doherty P, Bartke A. Effects of spontaneous Ley dig cell tumors on testicular steroidogenesis. J Androl 1983;4:34.Google Scholar
  57. 57.
    Hedrich HJ. Mutant genes and polymorphic loci of the laboratory rat. In: Hedrich HJ, ed. Genetic monitoring of inbred strains of rats. Stuttgart, BDR: Gustav Fisher Verlag, 1990:289–409.Google Scholar
  58. 58.
    Amador A, Klemcke HG, Bartke A. Autoregulation of hCG binding in Hre/+ rats. J Androl 1984;5:19P.Google Scholar
  59. 59.
    Hakamata Y, Kikukawa K, Kame T, Suzuki K, Taya K, Sasamoto S. A new male hypogonadism mutant rat (hgn/hgn): concentrations of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in the serum and the responsiveness of accesory sex organs to exogenous T, FSH, human chorionic gonadotropin, and luteinizing hormone-releasing hormone. Biol Reprod 1988;38:1145–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Amador AG, Siler-Khodr TM, Mayerhofer A, Steger RW, Bartke A. Intraspecies differences in the regulation of the pituitary-Leydig cell axis in the rat. Genetics 1989;122:s32.Google Scholar
  61. 61.
    Barenton B, Hochereau-de Reviers MT, Perreau C. Breed differences in testicular histology and numbers of LH and FSH receptors in the lamb. IRCS Med Sci 1983;11:471.Google Scholar
  62. 62.
    Hochereau-de Reviers MT, Blanc MR, Colas G, Pelletier J. Parameters of male fertility and their genetic variation in sheep. In: Land RB, Robinson DW, eds. Genetics of reproduction in sheep. London: Butterworths, 1985: 301–14.Google Scholar
  63. 63.
    Finkel MS, Marks ES, Patterson RE, Speir EH, Steadman K, Keiser HR. Increased cardiac calcium channels in hamster cardiomyopathy. Am J Cardiol 1986;57:1205–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Wagner JA, Reynolds W, Weisman HF, Dudeck P, Weisfeldt ML. Calcium antagonist receptors in cardiomyopathic hamsters: selective increases in heart, muscle, brain. Science 1986;232:515–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Amador AG, Mayerhofer A, Bartke A, Chandrashekar V. Pituitarytesticular axis in cardiomyopathic Syrian hamsters. J Androl 1992;13:422–7.PubMedGoogle Scholar
  66. 66.
    Amador AG, Bartke A, Klemcke HG, Siler-Khodr TM, Stallings MH. Effects of photoperiod and hCG on the regulation of testicular LH/hCG receptors in Syrian hamsters (Mesocricetus auratus). J Reprod Fertil 1985; 74:693–700.PubMedCrossRefGoogle Scholar
  67. 67.
    Amador AG, Bartke A. Actions of human chorionic gonadotropin on Ley dig cell function in hamsters with photoperiod-induced testicular atrophy. Ann NY Acad Sci 1987;513:353–5.CrossRefGoogle Scholar
  68. 68.
    Carayon P, Lefort G, Nisula B. Interaction of human chorionic gonadotropin and human luteinizing hormone with human thyroid membranes. Endocrinology 1980;106:1907–16.PubMedCrossRefGoogle Scholar
  69. 69.
    Frazier AL, Robbins LS, Stork PJ, Sprengel R, Segaloff DL, Cone RD. Isolation of TSH and LH/CG receptor cDNAs from human thyroid: regulation by tissue specific splicing. Mol Endocrinol 1990;4:1264–76.PubMedCrossRefGoogle Scholar
  70. 70.
    Sharpe RM, Wu FCW, Hargreave TB. Binding of human chorionic gonadotropin to testicular biopsy tissue from infertile men and the effect of prior treatment with human chorionic gonadotropin. J Endocrinol 1980;86:117–25.PubMedCrossRefGoogle Scholar
  71. 71.
    Grizard G, Boucher D, Hermabessiere J, Grizard J. Testicular receptors of human chorionic gonadotrophin in adult men. Binding and degradation of the hormone. Acta Endocrinol (Copenh) 1982;101:293–300.Google Scholar
  72. 72.
    Leinonen P, Bolton N, Vihko R. Human testicular LH receptors: correlations with circulating gonadotrophins and testicular steroid secretion. Int J Androl 1982;5:145–57.PubMedCrossRefGoogle Scholar
  73. 73.
    Namiki M, Kitamura M, Miyake O, et al. Reduction of testicular human chorionic gonadotropin receptors by human chorionic gonadotropin in infertile men. Arch Androl 1988;20:45–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Namiki M, Kitamura M, Nonomura N, et al. Reduction of testicular human chorionic gonadotropin receptors by human chorionic gonadotropin in vivo and in vitro. Horm Res 1988;29:156–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Namiki M, Kitamura M, Nonomura N, et al. Testicular gonadotropin receptors in men with hypogonadotropic hypogonadism. Arch Androl 1988; 20:81–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Berthezene F, Forest MG, Grimaud JA, Claustrat B, Monex R. Leydig cell agenesis: a cause of male pseudohermaphroditism. N Engl J Med 1976;295: 969–72.PubMedCrossRefGoogle Scholar
  77. 77.
    Brown DM, Markland C, Dehner LP. Leydig cell hypoplasia: a cause of male pseudohermaphroditism. J Clin Endocrinol Metab 1978;46:1–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Wu RHK, Rosenfeld R, Fukushima D. Hypogonadism and Leydig cell hypoplasia unresponsive to human luteinizing hormone (hLH). Am J Med Sci 1984;287:23–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Nistal M, Jimenez F, Paniagua R. Sertoli cell types in the Sertoli-cell-only syndrome: relationships between Sertoli cell morphology and aetiology. Histopathology 1990;16:173–80.PubMedCrossRefGoogle Scholar
  80. 80.
    Hammar M, Berg AA. Impaired Leydig cell function in vitro in testicular tissue from human males with “Sertoli cell only” syndrome. Andrologia 1985;17:37–41.PubMedCrossRefGoogle Scholar
  81. 81.
    Berman MI, Sairam MR. Studies on primate gonadotropin receptors: comparison of follitropin and lutropin receptors in human testis. Can J Biochem Cell Biol 1983;61:561–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Huhtaniemi I, Bolton N, Leinonen P, Kontturi M, Vihko R. Testicular luteinizing hormone receptor content and in vitro stimulation of cyclic adenosine 3′,5′-monophosphate and steroid production: a comparison between man and rat. J Clin Endocrinol Metab 1982;55:882–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Wahlstroem T, Huhtaniemi I, Hovatta O, Seppala M. Localization of luteinizing hormone, follicle-stimulating hormone, prolactin, and their receptors in human and rat testis using immunohistochemistry and radiore-ceptorassay. J Clin Endocrinol Metab 1983;57:825–30.CrossRefGoogle Scholar
  84. 84.
    Sinha Hikkim AP, Amador AG, Bartke A, Russell LD. Structure/function relationship in active and inactive hamster Leydig cells: a correlative morphometric and endocrine study. Endocrinology 1989;125:1844–56.CrossRefGoogle Scholar
  85. 85.
    Zaidi P, Wickings EJ, Arslan M, Nieschlag E. Characterization and comparison of testicular LH/hCG receptors of rhesus monkeys (Macaca mulatta) and green monkeys (Cercopithecus aethiops). Am J Primatol 1982;2:285–90.CrossRefGoogle Scholar
  86. 86.
    Tahka KM, Rajaniemi H. Photoperiodic modulation of testicular LH receptors in the bank vole (Clethrionomys glareolus). J Reprod Fertil 1985;75: 513–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Amador A, Bartke A, Gust C, Nequin L, Borer K. Effects of short photo-period (SPP) on plasma prolactin (PRL) and testicular function in Siberian hamsters (Phodopus sungorus). Biol Reprod 1986;34(suppl 1):183.Google Scholar
  88. 88.
    Amador AG, Harper MJK, Bartke A, Hogan MP, Norris CJ. Interspecies differences in testicular LH receptors and in vitro testosterone production among rodents. Rev Esp Fisiol 1986;42:389–94.PubMedGoogle Scholar
  89. 89.
    Amador AG, Mayerhofer A, Bartke A. Interspecies differences in the effects of hCG on testicular function among rodents. Rev Esp Fisiol 1990; 46:197–204.PubMedGoogle Scholar
  90. 90.
    Bartke A, Schanbacher BD, Amador AG, Klemcke HG, Chandrashekar V. Effects of immunoneutralization of luteinizing hormone (LH)-releasing hormone on testicular prolactin and LH receptors in the golden hamster and on LH receptors in the Djungarian hamster. Endocrinology 1987;121: 2027–34.PubMedCrossRefGoogle Scholar
  91. 91.
    West AP, Cooke BA. Regulation of the truncation of luteinizing hormone receptors at the plasma membrane is different in rat and mouse Ley dig cells. Endocrinology 1991;128:363–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Sundby A, Torjesen P, Hansson V. Particulate and solubilized LH receptor in the pig and bull testis. Arch Androl 1982;9:233–44.PubMedCrossRefGoogle Scholar
  93. 93.
    Mather JP, Saez JM, Haour F. Primary cultures of Leydig cells from rat, mouse and pig: advantages of porcine cells for the study of gonadotropin regulation of Leydig cell function. Steroids 1981;38:35–44.PubMedCrossRefGoogle Scholar
  94. 94.
    Stewart F, Allen WR. Biological function and receptor binding activities of equine chorionic gonadotropins. J Reprod Fertil 1981;62:527–36.PubMedCrossRefGoogle Scholar
  95. 95.
    Kikuchi M, Ishii S. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency. Biol Reprod 1989;41:1047–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Schlaghecke R. Binding of 125-J to rainbow trout (Salmo gairdneri) testis in vitro. Gen Comp Endocrinol 1983;49:261–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Le Ga F, Breton B, Bougoussa M. Gonadotropic hormone (GtH) receptors in the testis of the trout Salmo gairdneri; in vitro studies. Fish Physiol Biochem 1988;5:209–17.CrossRefGoogle Scholar
  98. 98.
    Yan L, Swanson P, Dickhoff WW. Binding of gonadotropins (GTH I and GTH II) to coho salmon gonadal membrane preparations. J Exp Zool 1991;258:221–30.CrossRefGoogle Scholar
  99. 99.
    Takada K, Kubokawa K, Ishii S. Specific gonadotropin binding sites in the bullfrog testis. Gen Comp Endocrinol 1986;61:302–12.PubMedCrossRefGoogle Scholar
  100. 100.
    Kubokawa K, Ishii S. Receptors for native gonadotropins in amphibian liver. Gen Comp Endocrinol 1987;68:260–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Carrell DT, Odell WD. A bacterial binding site which binds human chorionic gonadotropin but not human luteinizing hormone. Endocr Res 1992;18:51–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Johansson M, Ellegren H, Marklund L, et al. The gene for dominant white color in the pig is closely linked to ALB and PDG FRA on chromosome 8. Genomics 1992;14:965–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Lyon MF, Kirby MC. Mouse chromosome atlas. Mouse Genome 1992;90: 22–44.Google Scholar
  104. 104.
    O’Brien SJ, Womack JE, Lyons LA, Moore KJ, Jenkins NA, Copeland NG. Anchored reference loci for comparative genome mapping in mammals. Nature Genet 1993;3:103–12.PubMedCrossRefGoogle Scholar
  105. 105.
    Vilain E, McElreavey K, Herskowitz I, Fellous M. La determination du sexe: faits et nouveaux concepts. M/S Med Sci 1992;9:i–vii.Google Scholar
  106. 106.
    Su H, Lau Y-FC. Identification of the transcriptional unit, structural organization, and promoter sequence of the human sex-determing region Y (SRY) gene, using a reverse genetic approach. Am J Hum Genet 1993;52: 24–38.PubMedGoogle Scholar
  107. 107.
    McLaren A. Sex determination in mammals. Trends Genet 1988;4:153–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Abbas N, Bishop C, Fellous M. Genetique du sexe. La Recherche 1989; 213:1036–46.Google Scholar
  109. 109.
    Lobaccaro J-M, Sultan C. La differentiation sexuelle normale: genetique et endocrinologie moleculaires. CR Soc Biol 1992;186:314–31.Google Scholar
  110. 110.
    Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990;346:240–4.PubMedCrossRefGoogle Scholar
  111. 111.
    Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990;346:245–50.PubMedCrossRefGoogle Scholar
  112. 112.
    McLaren A. What makes a man a man? Nature 1990;346:216–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Koopman P, Muensterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 1990;348:450–2.PubMedCrossRefGoogle Scholar
  114. 114.
    Motro B, van der Kooy D, Rossant J, Reith A, Bernstein A. Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci. Development 1991;113:1207–21.PubMedGoogle Scholar
  115. 115.
    Josso N. Anti-muellerian hormone and Sertoli cell function. Horm Res 1992;38(suppl 2):72–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Yoshinaga K, Nishikawa S, Ogawa M, et al. Role of c-kit in mouse spermatogenesis: identification of spermatogonia a specific site of c-kit expression and function. Development 1991;113:689–99.PubMedGoogle Scholar
  117. 117.
    Hawkins JR. Genetic determinants of testis development in normal and abnormal individuals. Horm Res 1992;38(suppl 2):62–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Armando G. Amador
  • Artur Mayerhofer
  • Andrzej Bartke

There are no affiliations available

Personalised recommendations