Skip to main content

Stage-Related Functions of Sertoli Cells: Lessons from Lower Vertebrates

  • Conference paper
Function of Somatic Cells in the Testis

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

Abstract

Primarily from studies in mammals, it is evident that testicular functions have complex control mechanisms that include several categories of endocrine, paracrine, and autocrine mediators and involve crosstalk among germinal elements and multiple somatic cell types (e.g., Sertoli cells, Leydig cells, peritubular myoid cells, and fixed and transient leucocytes). As the only somatic cell element intimately in contact with germ cells, Sertoli cells have a pivotal role. What has hampered efforts to define functions of Sertoli cells during spermatogenic development is the organizational complexity of the mammalian testis. By contrast, the testis of certain lower vertebrates is much simpler in organization and has advantageous anatomic or functional characteristics that facilitate observation and experimental manipulation stage by stage. As part of a program of research examining the functional interdependence of spermatogenesis and steroidogenesis, we have carried out many studies using the spiny dogfish shark (Squalus acanthias) and have developed methods for studying spermatogenesis and its regulation using intact germinal units in vitro. Reviewed in this chapter are published and unpublished results from this laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Callard GV. Spermatogenesis. In: Pang P, Schreibman M, eds. Vertebrate endocrinology: fundamentals and biomedical implications; 4(A). New York: Academic Press, 1991:303–41.

    Google Scholar 

  2. Callard GV. Reproduction in male elasmobranch fishes. In: Kinne KH, ed. Oogenesis, spermatogenesis and reproduction; 10. Basel: Karger, 1991: 104–54.

    Google Scholar 

  3. Roosen-Runge EC. Spermatogenesis in animals. Cambridge University Press, 1977:1–214.

    Google Scholar 

  4. Pilsworth LM, Setchell BP. Spermatogenic and endocrine functions of the testis of invertebrate and vertebrate animals. In: Burger H, de Kretser D, eds. The testis. New York: Raven Press, 1981:9–38.

    Google Scholar 

  5. Setchell BP, Pilsworth LM. The functions of the testes of vertebrate and invertebrate animals. In: Burger H, de Kretser D, eds. The testis. New York: Raven Press, 1989:1–66.

    Google Scholar 

  6. Dodd JM, Sumpter JP. Fishes. In: Lamming GE, ed. Marshall’s physiology of reproduction; vol 1: reproductive cycles of vertebrates. New York: Churchill Livingstone, 1984:1–126.

    Google Scholar 

  7. Holstein AF. Zur frage der lokalen Steuerung der Spermatogenese beim dornhai (Squalus acanthias L.). Z Zellforsch 1969;93:265–81.

    Article  PubMed  CAS  Google Scholar 

  8. Pudney J, Callar d GV. Identification of Ley dig-like cells in the interstitium of the shark testis (Squalus acanthias). Tissue Cell 1984;18:375–82.

    Article  Google Scholar 

  9. Pudney J. Comparative cytology of the non-mammalian Sertoli cell. In: Russell LD, Griswold MD, eds. The sertoli cell. Clearwater, FL: Cache River Press, 1993:611–58.

    Google Scholar 

  10. Pudney J, Callard GV. Development of the agranular endoplasmic reticulum in the Sertoli cell of the shark Squalus acanthias during spermatogenesis. Anat Rec 1984;209:311–21.

    Article  PubMed  CAS  Google Scholar 

  11. Dym M, Fawcett DW. Further observations on the numbers of spermatogonia, spermatocytes and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod 1971;4:195–215.

    PubMed  CAS  Google Scholar 

  12. Russell LD, Peterson RN. Determination of the elongate spermatid-Sertoli cell ratio in various mammals. J Reprod Fertil 1984;70:635–41.

    Article  PubMed  CAS  Google Scholar 

  13. Fawcett DW. Ultrastructure and function of the Sertoli cell. In: Hamilton D, Greep R, eds. Handbook of physiology, endocrinology, vol 5: male reproductive system. Washington, DC: American Physiological Society, 1975: 21–56.

    Google Scholar 

  14. Callard GV, Pudney JA, Mak P, Canick JA. Stage-dependent changes in steroidogenic enzymes and estrogen receptors during spermatogenesis in the testis of the dogfish Squalus acanthias. Endocrinology 1985;177:1328–35.

    Article  Google Scholar 

  15. Cuevas ME, Miller W, Callard GV. Sulfoconjugation of steroids and the vascular pathway of communication in dogfish testis. J Exp Zool 1992;264: 119–29.

    Article  PubMed  CAS  Google Scholar 

  16. Cuevas ME, Collins K, Callard GV. Stage-related changes in steroid converting enzyme activities in Squalus testis: synthesis of biologically active metabolites via 3β-hydroxysteroid dehydrogenase/isomerase(3βHSD/isomerase) and 5α-reductase. Steroids 1993;58:87–94.

    Article  PubMed  CAS  Google Scholar 

  17. Cuevas ME, Callard GV. Androgen and progesterone receptors in shark (Squalus) testis: characteristics and stage-related distrubution. Endocrinology 1992;130(4):2173–82.

    Article  PubMed  CAS  Google Scholar 

  18. Ruh MF, Singh RH, Mak P, Callard GV. Tissue and species specificity of nuclear acceptor sites for the estrogen receptor of Squalus testis. Endocrinology 1986;118:811–8.

    Article  PubMed  CAS  Google Scholar 

  19. Mak P, Callard GV. A novel steroid binding protein in the testis of the dogfish Squalus acanthias. Gen Comp Endocrinol 1987;68:104–12.

    Article  PubMed  CAS  Google Scholar 

  20. Mellinger J. Stades de la Spermatogenese chez Scyliorhinus caniculus (L.): description, donnees histochimiques, variations normales et experimentales. Z Zeilforsch 1965;67:653–73.

    Article  Google Scholar 

  21. Gusse M, Chevaillier P. Ultrastructural and chemical study of chromatin during spermiogenesis of fish Schyliorhinus caniculus. Cytobiologie 1978; 16: 421–43.

    PubMed  CAS  Google Scholar 

  22. Collenot G. Apparition et evolution de l’activite endocrine du testicule de Scyliorhinus canicula L. (elasmobranche). Ann Embryol Morphol 1970;2: 461–77.

    Google Scholar 

  23. Collenot G, Damas D. Etude ultrastructurale de la cellule de Sertoli au cours de la Spermiogenese chez Scyliorhinus canicula L. Cah Biol Mar 1980;21: 209–19.

    Google Scholar 

  24. Stanley HP. The structure and development of the seminiferous follicle in Scyliorhinus caniculus and Torpedo marmorata (elasmobranchii). Z Zeilforsch 1966;75:453–68.

    Article  CAS  Google Scholar 

  25. Stephan MP. L’evolution de la cellule de Sertoli des selaciens après la Spermatogenese. C R Soc Biol (Paris) 1902;54:775–6.

    Google Scholar 

  26. Collenot G, Ozon R. Mise en evidence biochimique et histochimique d’une 5, 3β-hydroxysteroide dehydrogenase dans le testicule de Scyliorhinus canicula L. Bull Soc Zool Fr 1964;26:40–2.

    Google Scholar 

  27. Simpson TH, Wardle CS. A seasonal cycle in the testis of the spurdog, Squalus acanthias, and the sites of 3β-hydroxysteroid dehydrogenase activity. J Mar Biol Assoc UK 1967;47:699–808.

    Article  CAS  Google Scholar 

  28. Pudney J, Callard GV. Sertoli cell cytoplasts in the semen of the spiny dogfish (Squalus acanthias). Tissue Cell 1986;18:375–82.

    Article  PubMed  CAS  Google Scholar 

  29. Simpson TH, Wright RS, Renfrew J. Steroid biosynthesis in the semen of dogfish (Squalus acanthias). J Endocrinol 1964;31:11–20.

    Article  PubMed  CAS  Google Scholar 

  30. Simpson TH, Wright RS, Gottfried H. Steroids in the semen of dogfish (Squalus acanthias). J Endocrinol 1963;26:489–98.

    Article  PubMed  CAS  Google Scholar 

  31. Collenot G, Damas D. Mise in evidence de la nature proteique de corps enigmatiques presents dans le testicule de Scyliorhinus canicula L. (elasmobranche). Cah Biol Mar 1975;16:39–46.

    Google Scholar 

  32. Moyne G, Collenot G. Unusual nucleolar fine structure in the Sertoli cells of the dogfish Scyliorhinus canicula (L.). Biol Cell 1982;44:239–48.

    Google Scholar 

  33. Simpson TH, Wright RS, Hunt SV. Steroid biosynthesis in the testis of the dogfish (Squalus acanthias). J Endocrinol 1964;31:29–38.

    Article  PubMed  CAS  Google Scholar 

  34. Barry TP, Thomas P, Callard GV. Stage-related production of 21-hydroxyl-ated progestins by the dogfish (Squalus acanthias) testis. J Exp Zool 1993.

    Google Scholar 

  35. DuBois W, Mak P, Callard GV. Sertoli cell functions during spermatogenesis: the shark testis model. Fish Physiol Biochem 1989;7:221–7.

    Article  Google Scholar 

  36. Parvinen M. Regulation of the seminiferous epithelium. Endocr Rev 1982;3: 404–17.

    Article  PubMed  CAS  Google Scholar 

  37. Callard GV, Mak P. Exclusive nuclear localization of estrogen receptors in Squalus testis. Proc Natl Acad Sci USA 1985;32:1336–40.

    Article  Google Scholar 

  38. Dobson S, Dodd M. Endocrine control of the testis in the dogfish Schyliorhinus canicula L., I. Effects of partial hypophysectomy on gravimetric, hormonal and biochemical aspects of testis function. Gen Comp Endocrinol 1977;32:41–52.

    Article  PubMed  CAS  Google Scholar 

  39. Dobson S, Dodd M. Endocrine control of the testis in the dogfish Scyliorhinus canicula L., II. Histological and ultrastructural changes in the testis after partial hypophysectomy (ventral lobectomy). Gen Comp Endocrinol 1977;32:53–71.

    Article  PubMed  CAS  Google Scholar 

  40. Cuevas ME, Callard GV. In vitro steroid secretion by staged spermatocysts (Sertoli/germ cell units) of dogish (Squalus acanthias) testis. Gen Comp Endocrinol 1992;88:151–65.

    Article  PubMed  CAS  Google Scholar 

  41. Isomaa V, Parvinen M, Janne OA, Bardin CW. Nuclear androgen receptors in different stages of the seminiferous epithelial cycle and the interstitial tissue of rat testis. Endocrinology 1985;116:132–7.

    Article  PubMed  CAS  Google Scholar 

  42. Vernon RG, Go VLW, Fritz IB. Hormonal requirement of the different cycles of seminiferous epithelium during reinitiation of spermatogenesis in long-term hypophysectomized rats. J Reprod Fertil 1975;42:77–90.

    Article  PubMed  CAS  Google Scholar 

  43. Lyon MF, Glenister PH, Lamoreux ML. Normal spermatozoa from androgen resistant germ cells of chimaeric mice and the role of androgen in spermatogenesis. Nature 1975;258:620–2.

    Article  PubMed  CAS  Google Scholar 

  44. Nakhla AM, Mather JP, Janne OA, Bardin CW. Estrogen and androgen receptors in Sertoli, Leydig, myoid and epithelial cells: effect of time in culture and cell density. Endocrinology 1984;115:121–8.

    Article  PubMed  CAS  Google Scholar 

  45. Levy FO, Ree AH, Eikvar L, Govindan MV, Jahn T, Hansson V. Glucocorticoid receptors and glucocorticoid effects in rat Sertoli cells. Endocrinology 1988;124:430–6.

    Article  Google Scholar 

  46. Ritzen EM, Hansson V, French FS. The Sertoli cell. In: Burger H, de Kretser D, eds. The testis. New York: Raven Press, 1989:269–302.

    Google Scholar 

  47. Mak P, Callard GV. A novel steroid binding protein in the testis of the dogfish Squalus acanthias. Gen Comp Endocrinol 1987;68:104–12.

    Article  PubMed  CAS  Google Scholar 

  48. Callard GV, Mak P, DuBois W, Cuevas M. Regulation of spermatogenesis: the shark testis model. J Exp Zool 1989;(suppl 2):353–64.

    Google Scholar 

  49. Setchell BP. The mammalian testis; Ithaca, NY: Cornell University Press, 1978;61–5.

    Google Scholar 

  50. DuBois W, Callard GV. Culture of intact Sertoli/germ cell units and isolated Sertoli cells from Squalus testis, I. Evidence of stage-related function in vitro. J Exp Zool 1991;258:359–72.

    Article  PubMed  CAS  Google Scholar 

  51. Sourdaine P, Jegou B. Dissociation and identification of intact seminiferous lobules from the testis of the dogfish (Scyliorhinus canicula). Cell Tissue Res 1989;255:199–207.

    Article  Google Scholar 

  52. Hadley MA, Byers SW, Suarez-Quian CA, Kleinman HK, Dym M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation and germ cell development in vitro. J Cell Biol 1985;101–2:1511–22.

    Article  Google Scholar 

  53. DuBois W, Callard GV. Culture of intact Sertoli/germ cell units and isolated Sertoli cells from Squalus testis, II. Stimulatory effects of IGF-I and other factors on DNA synthesis. J Exp Zool 1993.

    Google Scholar 

  54. Clermont Y, Mauger A. Existence of a spermatogonial chalone in the rat testis. Cell Tissue Kinet 1974;7:165–72.

    PubMed  CAS  Google Scholar 

  55. Piferrer F, Redding M, DuBois W, Callard GV. Stage-specific stimulatory and inhibitory regulation of the spermatogenic progression: studies in Squalus acanthias. Fish Physiol Biochem 1993.

    Google Scholar 

  56. Piferrer F, Callard GV. Regulation of DNA synthesis during premeiotic stages of spermatogenesis by a growth inhibitory factor from the immune system. Proc Endocr Soc, June 9–12, 1993, Las Vegas, NV.

    Google Scholar 

  57. Allan DJ, Harmon BV, Kerr JFR. Cell death in spermatogenesis. In: Potten CS, ed. Perspectives on mammalian cell death. UK: Oxford University Press, 1987:229–58.

    Google Scholar 

  58. Sourdaine P, Jegou B. Dissociation and identification of intact seminiferous lobules from the testis of the dogfish (Scyliorhinus canicula L.). Cell Tissue Res 1988;255:199–207.

    Google Scholar 

  59. Betka M, Callard GV. Stage-related and regulated changes in protein synthesis during spermatogenesis in vitro: the shark (Squalus acanthias) testis model. Bull MDIBL 1993;32:113–4.

    Google Scholar 

  60. Chauviere M, Martinage A, Briand G, Sautiere P, Chevaillier P. Nuclear basic protein transition during sperm differentiation: amino acid sequence of a spermatid-specific protein from the dogfish Scyliorhinus caniculus. Eur J Biochem 1987;169:105–11.

    Article  PubMed  CAS  Google Scholar 

  61. Vernon RB, Sage H. The calcium-binding protein SPARC is secreted by Leydig and Sertoli cells of the adult mouse testis. Biol Reprod 1989;40: 1329–40.

    Article  PubMed  CAS  Google Scholar 

  62. Otsuka F, Koizumi S, Kimura M, Ohsawa M. Silver staining for carboxy-methylated metallothioneins in Polyacrylamide gels. Anal Biochem 1988; 168: 184–92.

    Article  PubMed  CAS  Google Scholar 

  63. De SK, Enders GC, Andrews GK. High levels of metallothionein messenger RNAs in male germ cells of the adult mouse. Mol Endocrinol 1991;5:628–36.

    Article  PubMed  CAS  Google Scholar 

  64. Callard GV. The autocrine and paracrine role of steroids during spermatogenesis: studies in Squalus acanthias and Necturus maculosus. J Exp Zool 1992;261:132–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Callard, G.V., Betka, M., Jorgensen, J.C. (1994). Stage-Related Functions of Sertoli Cells: Lessons from Lower Vertebrates. In: Bartke, A. (eds) Function of Somatic Cells in the Testis. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2638-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2638-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7619-7

  • Online ISBN: 978-1-4612-2638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics