Skip to main content

Inhibition of Spermatogenesis by Tetanus Toxin Expression in Sertoli Cells of Transgenic Mice

  • Conference paper
Function of Somatic Cells in the Testis

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

  • 99 Accesses

Abstract

The event of homologous recombination provides a very powerful tool to introduce mutations into possibly every gene (1, 2). Once a gene is cloned, a mutation can be introduced, first, by standard recombinant DNA methodology and, subsequently, with the help of embryonic stem cells into the mouse germline. The challenge then remains to find out how the animals can cope with the genetic defect and to deduce the role of the gene in the intact organism from the results obtained. This technique now makes it feasible to deploy a genetic approach for the molecular analysis of mammalian development and physiology. An obvious disadvantage of homologous recombination, however, is the difficulty in targeting a specific tissue. For example, if one were to introduce a mutation into the β-actin gene, it seems likely that this mutation would affect the viability of the whole organism. Thus, such a mouse model might not be useful for studying the role of the actin cytoskeleton in Sertoli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capecchi MR. The new mouse genetics: altering the genome by gene targeting. TIG 1989;5:70–6.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmer A. Manipulating the genome by homologous recombination in embryonic stem cells. Annu Rev Neurosci 1992;15:115–37.

    Article  PubMed  CAS  Google Scholar 

  3. Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster R. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 1987;50:435–43.

    Article  PubMed  CAS  Google Scholar 

  4. Breitman ML, Clapoff S, Rossant J, et al. Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 1987;238:1563–5.

    Article  PubMed  CAS  Google Scholar 

  5. Behringer RR, Mathews LS, Palmiter R, Brinster R. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 1988; 2:453–61.

    Article  PubMed  CAS  Google Scholar 

  6. Burton FH, Hasel KW, Bloom FE, Sutcliffe JG. Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene. Nature 1991;350:74–7.

    Article  PubMed  CAS  Google Scholar 

  7. Habermann E, Dreyer F. Clostridial neurotoxins: handling and action at the molecular level. Curr Top Microbiol Immunol 1986;129:93–179.

    PubMed  CAS  Google Scholar 

  8. Helting TB, Parschat S, Engelhardt H. Structure of tetanus toxin. J Biol Chem 1979;254:10728.

    PubMed  CAS  Google Scholar 

  9. Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synapto-brevin. Nature 1992;359:832–5.

    Article  PubMed  CAS  Google Scholar 

  10. Schiavo G, Poulain B, Rossetto O, Benfenati F, Tauc L, Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depends on zinc. EMBO J 1992;11:3577–83.

    PubMed  CAS  Google Scholar 

  11. Baumert M, Maycox PR, Navone F, DeCamili P, Jahn R. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J 1989;8:379–84.

    PubMed  CAS  Google Scholar 

  12. Eisel U, Jarausch W, Goretzki K, et al. Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins. EMBO J 1986; 5:2495–502.

    PubMed  CAS  Google Scholar 

  13. Hammer GD, Fairchild-Huntress V, Low MJ. Pituitary-specific and hormonally regulated gene expression directed by the rat proopiomelanocortin promoter in transgenic mice. Mol Endocrinol 1990;4:1689–97.

    Article  PubMed  CAS  Google Scholar 

  14. Oberdick J, Smeyne RJ, Mann JR, Zackson S, Morgan JI. A promoter that drives transgene expression in cerebellar Purkinje cells and retinal bipolar neurons. Science 1990;248:223–6.

    Article  PubMed  CAS  Google Scholar 

  15. Oberdick J, Levinthal F, Levinthal C. A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular sis/PDGF2 gene. Neuron 1988;1:367–76.

    Article  PubMed  CAS  Google Scholar 

  16. Gizang-Ginsberg E, Wolgemuth DJ. Expression of the proopiomelanocortin gene is developmentally regulated and affected by germ cells in the male mouse reproductive system. Proc Natl Acad Sci USA 1987;84:1600–4.

    Article  PubMed  CAS  Google Scholar 

  17. Holstein AF. Morphologische Studien an abnormen spermatiden und sper-matozoen des menschen. Virchows Arch [A] 1975;367:93–112.

    Article  CAS  Google Scholar 

  18. Hrudka F, Singh A. Sperm nucleomalacia in men with inflammatory bowel disease. Arch Androl 1984;13:37–57.

    Article  PubMed  CAS  Google Scholar 

  19. Maekawa M, Nagano T, Kamimura K, Murakami T, Ishikawa H, Dezawa M. Distribution of actin-filament bundles in myoid cells, Sertoli cells, and tunica albuginea of rat and mouse testis. Cell Tissue Res 1991;266:295–300.

    Article  PubMed  CAS  Google Scholar 

  20. Vogl AW. Distribution and function of organized concentrations of actin filaments in mammalian spermatogenic cells and Sertoli cells. Int Rev Cytol 1989;119:1–56.

    Article  PubMed  CAS  Google Scholar 

  21. Kerr JB, Maddocks S, Sharpe RM. Testosterone and FSH have independent, synergistic and stage-dependent effects upon spermatogenesis in the rat testis. Cell Tissue Res 1992;268:179–89.

    Article  PubMed  CAS  Google Scholar 

  22. Chubb C, Ewing LL. Leydig cell. In: Lipschultz LI, Howard SS, eds. Infertility in the male. 2nd ed. St. Louis: Mosby-Year Book, 1991:37–53.

    Google Scholar 

  23. Le jeune H, Skalli M, Chatelain PG, Avallet O, Saez JM. The paracrine role of Sertoli cells on Leydig cell function. Cell Biol Toxicol 1992;8:73–83.

    Article  PubMed  CAS  Google Scholar 

  24. Wong TW, Strauss FH, Warner NE. Testicular biopsy in the study of male infertility, I. Testicular causes of infertility. Arch Pathol 1973;95:151–9.

    PubMed  CAS  Google Scholar 

  25. Lipschultz LI. Cryptorchidism in the subfertile male. Fertil Steril 1976; 27:609–20.

    Google Scholar 

  26. Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993;362:318–24.

    Article  PubMed  Google Scholar 

  27. Jegou B. The Sertoli cell. Baillieres Clin Endocrinol Metab 1992;6:273–311.

    Article  PubMed  CAS  Google Scholar 

  28. Skinner MK. Cell-cell interactions in the testis. Endocr Rev 1991;12:45–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Eisel, U., Reynolds, K., Riddick, M., Zimmer, A., Zimmer, A. (1994). Inhibition of Spermatogenesis by Tetanus Toxin Expression in Sertoli Cells of Transgenic Mice. In: Bartke, A. (eds) Function of Somatic Cells in the Testis. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2638-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2638-3_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7619-7

  • Online ISBN: 978-1-4612-2638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics