Skip to main content

Mediation of the Hormonal Stimulation of Steroidogenesis by the Polypeptide Diazepam Binding Inhibitor

  • Conference paper
Function of Somatic Cells in the Testis

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

Abstract

Eukaryotic steroid hormones, derived from cholesterol, are responsible for the maintenance of the organism’s homeostasis, adaptability to the environment, and developmental and reproductive functions. The mechanisms by which pituitary trophic hormones, such as adrenocorticotropin and luteinizing hormone (LH), act on their respective target organs, adrenal and gonads, to stimulate steroidogenesis have been under extensive investigation during the last 40 years (1–5). Both hormones bind to cell surface receptors that activate adenylyl cyclase that then initiates a complex series of events in which cAMP-dependent protein kinase and cholesterol esterase are involved, ultimately increasing delivery of cholesterol to the cytochrome P450 side-chain cleavage enzyme (P450scc). Cholesterol is liberated from extramitochondrial stores, transported to mitochondria, incorporated into the outer mitochondrial membrane, and finally delivered to the inner mitochondrial membrane where it is converted to pregnenolone by P450scc and auxiliary electron-transferring proteins (1–5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simpson ER, Waterman MR. Regulation by ACTH of steroid hormone biosynthesis in the adrenal cortex. Can J Biochem Cell Biol 1983;61:692–707.

    Article  PubMed  CAS  Google Scholar 

  2. Hall PF. Cellular organization for steroidogenesis. Int Rev Cytol 1984; 86:53–95.

    Article  PubMed  CAS  Google Scholar 

  3. Kimura T. Transduction of ACTH signal from plasma membrane to mitochondria in adrenocortical steroidogenesis. Effects of peptide, phospholipid, and calcium. J Steroid Biochem 1986;25:711–6.

    Article  PubMed  CAS  Google Scholar 

  4. Orme-Johnson NB. Distinctive properties of adrenal cortex mitochondria. Biochim Biophys Acta 1990;1020:213–31.

    Article  PubMed  CAS  Google Scholar 

  5. Jefcoate CR, McNamara BC, Artemenko I, Yamazaki T. Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis. J Steroid Biochem Mol Biol 1992;43:751–67.

    Article  CAS  Google Scholar 

  6. Hall PF, Papadopoulos V, Yanagibashi K. On the mechanism of action of ACTH. In: Imura H, Shizume K, Yoshida S, eds. Progress in endocrinology. Amsterdam: Elsevier, 1988:253–8.

    Google Scholar 

  7. Yanagibashi K, Ohno Y, Kawamura M, Hall PF. The regulation of intracellular transport of cholesterol in bovine adrenal cells: purification of a novel protein. Endocrinology 1988;123:2075–82.

    Article  PubMed  CAS  Google Scholar 

  8. Besman MJ, Yanagibashi K, Lee TD, Kawamura M, Hall PF, Shively JE. Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc Natl Acad Sci USA 1989;86:4897–901.

    Article  PubMed  CAS  Google Scholar 

  9. Guidotti A, Forchetti CM, Corda MG, Konkel D, Bennet CD, Costa E. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA 1983;80:3531–3.

    Article  PubMed  CAS  Google Scholar 

  10. Shoyab M, Gentry LE, Marquardt H, Todaro G. Isolation and characterization of a putative endogenous benzodiazepinoid (Endozepine) from bovine and human brain. J Biol Chem 1986;261:11968–73.

    PubMed  CAS  Google Scholar 

  11. Papadopoulos V, Guarneri P, Krueger KE, Guidotti A, Costa E. Pregnenolone biosynthesis in C6 glioma cell mitochondria: regulation by a diazepam binding inhibitor mitochondrial receptor. Proc Natl Acad Sci USA 1992; 89:5118–22.

    Article  PubMed  Google Scholar 

  12. Papadopoulos V, Berkovich A, Krueger KE, Costa E, Guidotti A. Diazepam binding inhibitor (DBI) and its processing products stimulate mitochondrial steroid biosynthesis via an interaction with mitochondrial benzodiazepine receptors. Endocrinology 1991;129:1481–8.

    Article  PubMed  CAS  Google Scholar 

  13. Yanagibashi K, Ohno Y, Nakamichi N, et al. Peripheral-type benzodiazepine receptors are involved in the regulation of cholesterol side chain cleavage in adrenocortical mitochondria. J Biochem 1989;106:1026–9.

    PubMed  CAS  Google Scholar 

  14. Papadopoulos V, Mukhin AG, Costa E, Krueger KE. The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis. J Biol Chem 1990;265:3772–9.

    PubMed  CAS  Google Scholar 

  15. Papadopoulos V, Nowzari FB, Krueger KE. Hormone-stimulated steroidogenesis is coupled to mitochondrial benzodiazepine receptors. J Biol Chem 1991;266:3682–7.

    PubMed  CAS  Google Scholar 

  16. Krueger KE, Papadopoulos V. Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J Biol Chem 1990;265:15015–22.

    PubMed  CAS  Google Scholar 

  17. Amsterdam A, Suh BS. An inducible functional peripheral benzodiazepine receptor in mitochondria of steroidogenic granulosa cells. Endocrinology 1991;128:503–10.

    Article  Google Scholar 

  18. Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr Rev 1993; 14:222–40.

    PubMed  CAS  Google Scholar 

  19. Brown AS, Hall PF. Stimulation by endozepine of the side-chain cleavage of cholesterol in a reconstituted enzyme system. Biochem Biophys Res Commun 1991;180:609–14.

    Article  PubMed  CAS  Google Scholar 

  20. Schultz R, Pelto-Huikko M, Alho H. Expression of diazepam binding inhibitor-like immunoreactivity in rat testis is dependent on pituitary hormones. Endocrinology 1992;130:3200–6.

    Article  PubMed  CAS  Google Scholar 

  21. Seybert DW, Lancaster JR, Lambeth JD, Kamin H. Participation of the membrane in the side chain cleavage of cholesterol. Reconstitution of cytochrome P-450SCC into phospholipid vesicles. J Biol Chem 1979;254:12088–98.

    PubMed  CAS  Google Scholar 

  22. Lambeth JD, Kamin H. Adrenodoxin reductase-adrenodoxin complex. J Biol Chem 1979;254:2766–74.

    PubMed  CAS  Google Scholar 

  23. Ascoli M. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 1981;108:88–95.

    Article  PubMed  CAS  Google Scholar 

  24. Brown AS, Hall PF, Shoyab M, Papadopoulos V. Endozepine/diazepam binding inhibitor in adrenocortical and Leydig cell lines: absence of hormonal regulation. Mol Cell Endocrinol 1992;83:1–9.

    Article  PubMed  CAS  Google Scholar 

  25. Stein CA, Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res 1988;48:2659–68.

    PubMed  CAS  Google Scholar 

  26. Brown MS, Kovanen PT, Goldstein JL. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res 1979;35:215–57.

    PubMed  CAS  Google Scholar 

  27. Freeman DA, Ascoli M. The low-density lipoprotein pathway of cultured Leydig tumor cells. Biochim Biophys Acta 1983;754:72–81.

    PubMed  CAS  Google Scholar 

  28. MacKellar C, Graham D, Will DW, Burgess S, Brown T. Synthesis and physical properties of anti-HIV antisense oligonucleotides bearing terminal lipophilic groups. Nucleic Acids Res 1992;20:3411–7.

    Article  PubMed  CAS  Google Scholar 

  29. Boujrad N, Hudson JR Jr, Papadopoulos V. Inhibition of hormone-stimulated steroidogenesis in cultured Leydig tumor cells by a cholesterol-linked phos-phorothioate oligodeoxynucleotide antisense to diazepam binding inhibitor. Proc Natl Acad Sci USA 1993.

    Google Scholar 

  30. Owens GP, Sinha AK, Sikela JM, Hahn WE. Sequence and expression of the murine diazepam binding inhibitor. Mol Brain Res 1989;6:101–8.

    Article  PubMed  CAS  Google Scholar 

  31. Krieg AM, Tonkinson J, Matson S, et al. Modification of antisense phos-phodiester oligodeoxynucleotides by a 5′ cholesterol moiety increases cellular association and improves efficacy. Proc Natl Acad Sci USA 1993;90:1048–52.

    PubMed  CAS  Google Scholar 

  32. Gamier M, Boujrad N, Oke BO, et al. Diazepam binding inhibitor is a paracrine/autocrine regulator of Leydig cell proliferation and steroidogenesis: action via peripheral-type benzodiazepine receptor and independent mechanisms. Endocrinology 1993;132:444–58.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Boujrad, N., Hudson, J.R., Papadopoulos, V. (1994). Mediation of the Hormonal Stimulation of Steroidogenesis by the Polypeptide Diazepam Binding Inhibitor. In: Bartke, A. (eds) Function of Somatic Cells in the Testis. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2638-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2638-3_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7619-7

  • Online ISBN: 978-1-4612-2638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics