Skip to main content

Function Fields of Conies, a Theorem of Amitsur—MacRae, and a Problem of Zariski

  • Chapter
Algebraic Geometry and its Applications

Abstract

One of the first and most fundamental results in the theory of non-algebraic field extensions is Lüroth’s theorem (1876): If kLk(t) = K are field extensions, with t transcendental over k, then there exists u ε L such that L = k(u).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. S. Abhyankar and C. Bajaj, Computations with algebraic curves; Symbolic and algebraic computation, ISSAC ’88; Lecture notes in computer science, No. 358, Springer, 1989, pp. 274–284.

    MathSciNet  Google Scholar 

  2. S. A. Amitsur, Generic splitting fields of central simple algebras, An­nals of Math. 62 (1955), 8–43.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. A. Amitsur, Generic splitting fields; Brauer groups in ring theory and algebraic geometry (F. van Oystaeyen and A. Verschoren editors), Lec­ture Notes in Math. 917, Springer, Berlin, 1982, pp. 1–24.

    Google Scholar 

  4. S. A. Amitsur, Division algebras — a survey, Contemporary Math. 13 (1982), 3–26.

    MathSciNet  MATH  Google Scholar 

  5. E. Artin, Algebraic numbers and algebraic functions, Gordon and Breach, New York, 1967.

    MATH  Google Scholar 

  6. A. Beauville, J.-L. Colliot-Théléne, J.-J. Sansuc, and Sir P. Swinnerton-Dyer, Varietes stablement rationnelles non rationnelles, Annals of Math. 121 (1986), 283–315.

    Article  Google Scholar 

  7. C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys 6, American Math. Soc., New York, 1951.

    Google Scholar 

  8. J. -L. Colliot-Thélène, Les grands themes de Francois Chatelet, L’En­seignement Math. 34 (1988), 387–405.

    MATH  Google Scholar 

  9. J. -L. Colliot-Thélène, Arithmetic des variétés rationnelles et prob­lèmes birationnels, Proc. Int. Congress Math. Berkeley, 1986, 641–653.

    Google Scholar 

  10. J. -L. Colliot-Thélène, J.-J. Sansuc, and Sir P. Swinnerton-Dyer, In­tersections of two quadrics and Chatelet surfaces, J. fur die reine u. angew. Math.; Part I, vol. 373 (1986), 37–107; Part II, vol. 374 (1986), 72–165.

    Google Scholar 

  11. D. Coray, The Hasse principle for pairs of quadratic forms, in: Journees arithmétiques 1980, ed. J. V. Armitage, London Math. Soc. Lec­ture Notes Series 56 (1982), 237–246.

    Chapter  Google Scholar 

  12. J. Deveney, Ruled function fields, Proc. Amer. Math. Soc. 86 (1982), 213–215.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Eichler, Introduction to the theory of algebraic numbers and func­tions, Academic Press, New York, 1966.

    MATH  Google Scholar 

  14. M. Fried, A note on principal ideals and smooth curves, J. of Algebra 74 (1982), 124–139.

    Article  MathSciNet  MATH  Google Scholar 

  15. W.-D. Geyer, The automorphism group of the field of all algebraic numbers, Atas da 5a escola de algebra, IMPA vol. 11, Rio de Janeiro, 1978, 167–199.

    MathSciNet  Google Scholar 

  16. I. Kaplansky, Linear algebra and geometry, Chelsea, New York, 1974.

    Google Scholar 

  17. I. Kersten, Brauergruppen von Korpern, Aspekte der Math. Band D6, Vieweg & Sohn, Braunschweig/Wiesbaden, 1990.

    Google Scholar 

  18. M. Knebusch, Generic splitting of quadratic forms I, Proc. London Math. Soc. 33 (1976), 65–93; II, ibid. 34 (1977), 1–31.

    Article  MathSciNet  Google Scholar 

  19. T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Mass., 1980.

    Google Scholar 

  20. S. Lang and J. Tate, On Chevalley’s proof of Lüroth’s theorem, Proc. Amer. Math. Soc. 3 (1952), 621–624.

    MathSciNet  MATH  Google Scholar 

  21. R. E. MacRae, On rational points on conics, Proc. Amer. Math. Soc. 67 (1977), 38–40.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. E. MacRae and P. Samuel, Subfields of index 2 of elliptic function fields, Conference on commutative algebra, Lawrence, Kansas 1972, 171–193; Lecture notes in math. 311, Springer, Berlin, 1973.

    Google Scholar 

  23. Yu. I. Manin and M. A. Tsfasman, Rational varieties: algebra, geom­etry and arithmetic, Russian Math. Surveys 41:2 (1986), 51–114.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. T. Moh and W. Heinzer, On the Lüroth semigroup and Weier-strass canonical divisors, J. of Algebra 77 (1982), 62–73.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Moret-Bailly, Variétés stablement rationnelles non rationnelles, Sem. Bourbaki, 1984–85, no. 643, 14 pp.

    Google Scholar 

  26. M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85–91.

    MathSciNet  MATH  Google Scholar 

  27. M. Nagata, Field theory, Dekker, New York, 1977.

    MATH  Google Scholar 

  28. J. Ohm, On ruled fields, Sém. de théorie des nombres, Univ. Bordeaux 1 (1988–1989), 27–49.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Roberts, K1 of a curve of genus zero, Trans. Amer. Math. Soc. 188 (1974), 319–324.

    MathSciNet  MATH  Google Scholar 

  30. P. Samuel, Some remarks on Lüroth’s theorem, Memoirs of College of Sci. of Univ. of Kyoto 27 (1953), 223–224.

    MathSciNet  MATH  Google Scholar 

  31. P. Samuel, Lectures on old and new results on algebraic curves, Tata Institute, Bombay, 1964.

    Google Scholar 

  32. P. Samuel, Algebraic theory of numbers, Hermann, Paris, 1970.

    MATH  Google Scholar 

  33. B. Segre, Sur un problem de M. Zariski, Coll. international d’algebre et de theorie des nombres (Paris, 1949) 135–138, C. N. R. S., Paris, 1950.

    Google Scholar 

  34. J. -P. Serre, A course in arithmetic, Springer, New York, 1973.

    MATH  Google Scholar 

  35. J.-P. Serre, Local fields, Springer, New York, 1979.

    MATH  Google Scholar 

  36. A. A. Suslin, The quaternion homomorphism for the function field on a conic, Soviet Math. Doklady 26 (1982), 72–77.

    MATH  Google Scholar 

  37. R. Swan, Noether’s problem in galois theory; Emmy Noether in Bryn Mawr (B. Srinivasan and J. Sally, editors), Springer, 1983, pp. 21–40.

    Google Scholar 

  38. J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400–404.

    Article  MathSciNet  MATH  Google Scholar 

  39. B. L. van der Waerden, Modem algebra I, Unger, New York, 1949.

    Google Scholar 

  40. A. Wadsworth, Merkurjev’s elementary proof of Merkurjev’s theorem, Contempory Math. Vol. 55, Part II (1986), 741–774.

    MathSciNet  Google Scholar 

  41. A. Wadsworth, Letter, May 6, 1990.

    Google Scholar 

  42. A. Wadsworth, Similarity of quadratic forms and isomorphism of their function fields, Trans. Amer. Math. Soc. 208 (1975), 352–358

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Waterhouse, The structure of inseparable field extensions, Trans. Function Fields of Conies, a Theorem, & a Problem 363 Amer. Math. Soc. 211 (1975), 39–54.

    MathSciNet  MATH  Google Scholar 

  44. A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Pub. 29, Providence, 1962.

    Google Scholar 

  45. O. Zariski and P. Samuel, Commutative algebra, vol. I, van Nostrand, Princeton, 1955.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ohm, J. (1994). Function Fields of Conies, a Theorem of Amitsur—MacRae, and a Problem of Zariski. In: Bajaj, C.L. (eds) Algebraic Geometry and its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2628-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2628-4_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7614-2

  • Online ISBN: 978-1-4612-2628-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics