Skip to main content

Permutation Invariant Upper and Lower Probabilities

  • Conference paper
  • 450 Accesses

Abstract

We characterize upper probabilities that are invariant with respect to permutations. A one-to-one relationship is established between generalized upper probabilities, upper probabilities and 2-alternating upper probabilities and certain classes of point functions. In particular, 2-alternating upper probabilities, which are ubiquitous in the statistical robustness literature, are given a simple interpretation. We also show that undominated invariant generalized upper probabilities do not exist.

Research supported by NSF grant DMS-9005858.

Research supported by NSF grant DMS-87-05646 and ONR grant N00014-89-5-1851.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beduarski, Tadeusz (1982). Binary experiments, minimax tests and 2-alternating capacities. Ann. Statist. 10, 226–232.

    Article  MathSciNet  Google Scholar 

  • Berger, J. (1984). The robust Bayesian viewpoint (with discussion). Robustness in Bayesian Statistics. (J. Kadane ed.): North Holland, Amsterdam.

    Google Scholar 

  • Berger, J. (1990). Robust Bayesian analysis: sensitivity to the prior. J. Statist. Plann. Inf. 25, 303–328.

    Article  MATH  Google Scholar 

  • Bruckner, A. M. and Ostrow, E. (1962). Some function classes related to the class of convex functions. Pacific J. Math. 12, 1203–1215.

    MathSciNet  MATH  Google Scholar 

  • Buja, A. (1984). Simultaneously least favourable experiments. Part I: upper standard functionals and sufficiency. Z. Wahr. verw. Gebiete. 65, 367–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Buja, A. (1985). Simultaneously least favourable experiments. Part II: upper standard loss functions and their applications. Z. Wahr. verw. Gebiete. 69, 387–420.

    Article  MathSciNet  MATH  Google Scholar 

  • Buja, A. (1986). On the Huber-Strassen theorem. Probab. Th. Rel. Fields 73, 367–384.

    Article  MathSciNet  Google Scholar 

  • Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier. (Grenoble) 5, 131–295.

    Article  MathSciNet  Google Scholar 

  • Dall’ Aglio, G. (1989). Personal communication.

    Google Scholar 

  • Fine, T. (1988). Lower probability models for uncertainty and nondeterministic processes. J. Statist. Plann. Inf. 20, 389–411.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1973). The use of Choquet capacities in statistics. Bull. Inst. Internat. Statist. 45, 181–191.

    MathSciNet  Google Scholar 

  • Huber, P. J. and Strassen, V. (1973). Minimax tests and the Neyman-Pearson lemma for capacities. Ann. Statist. 1, 251–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Kemperman, J. H. B. (1968). The general moment problem, a geometric approach. Ann. Math. Statist. 39, 93–122.

    Article  MathSciNet  MATH  Google Scholar 

  • Lavine, M. (1991). Sensitivity in Bayesian statistics: the prior and the likelihood. J. Amer. Statist. Assoc. 86, 400–403.

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. Academic Press: New York.

    MATH  Google Scholar 

  • Papamarcou, A. and Fine, T. (1986). A note on undominated lower probability. Ann. Probab. 14, 710–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Rieder, H. (1977). Least favourable pairs for special capacities. Ann. Statist. 5, 909–921.

    Article  MathSciNet  MATH  Google Scholar 

  • Walley, P. (1981). Coherent lower (and upper) probabilities. Statistics research report, University of Warwick, Coventry.

    Google Scholar 

  • Walley, P. (1991). Statistical Reasoning With Imprecise Probabilities. Chapman and Hall, London.

    MATH  Google Scholar 

  • Walley, P. and Fine, T. (1982). Towards a frequentist theory of upper and lower probability. Ann. Statist. 10, 741–761.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasserman, L. A. and Kadane, J. (1990). Bayes’ theorem for Choquet capacities. Ann. Statist. 18, 1328–1339.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasserman, L. A. and Kadane, J. (1992). Symmetric upper probabilities. To appear in Ann. Statist.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Wasserman, L., Kadane, J.B. (1994). Permutation Invariant Upper and Lower Probabilities. In: Gupta, S.S., Berger, J.O. (eds) Statistical Decision Theory and Related Topics V. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2618-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2618-5_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7609-8

  • Online ISBN: 978-1-4612-2618-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics