Skip to main content

An Infinite Dimensional Convolution Theorem

  • Conference paper
Statistical Decision Theory and Related Topics V

Abstract

The classical Hájek-LeCam convolution theorem assumes that the underlying parameter space is a locally compact group. Extensions to Hilbert spaces with Gaussian measures were given by Moussatat, Millar and von der Vaart. We propose an extension covering cylinder measures subject to a domination restriction on their finite dimensional projections. The proof is complex and leaves open a number of problems.

Research supported by NSF Grant DMS 9001710.

I am indebted to a referee for pointing out the works of Paterson (1983) and Wendel (1952).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackwell, D. (1953). “Equivalent comparisons of experiments.” Ann. Math. Stat. 24, 265–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Bochner, S. (1947). “Stochastic processes.” Ann. of Math. 48, 1014–1061.

    Article  MathSciNet  MATH  Google Scholar 

  • Bochner, S. and Chandrasekharan, K. (1949). Fourier Transforms. Annals of Mathematics Studies. Princeton University Press.

    Google Scholar 

  • Boll, C. (1955). “Comparison of experiments in the infinite case and the use of invariance in establishing sufficiency.” Unpublished Ph.D. Thesis, Stanford.

    Google Scholar 

  • Brainerd, B. and Edwards, R. E. (1966). “Linear operators which commute with translations.” I and II. J. Austr. Math. Soc. VI 289–350.

    Article  MathSciNet  Google Scholar 

  • Eberlein, W. F. (1949). “Abstract ergodic theorems and weak almost periodic functions.” Trans. Amer. Math. Soc. 67, 217–240.

    Article  MathSciNet  MATH  Google Scholar 

  • Hajek, J. (1970). “A characterization of limiting distributions of regular estimates.” Z. Wahrsch. Verw. Gebiete 14, 323–320.

    Article  MATH  Google Scholar 

  • Hansen, O. H. and Torgersen, E. N. (1974). “Comparison of linear normal experiments.” Ann. Statist. 2, 367–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Hesse, C. (1991). “On a class of linear models in economics.” Tech. Report, U. C. Berkeley, Department of Statistics.

    Google Scholar 

  • Ibragimov, I. and Has’minskii, 111. (1981). Statistical Estimation: Asymptotic Theory. Springer Verlag. New York, Heidelberg, Berlin.

    MATH  Google Scholar 

  • Inagaki, N. (1970). “On the limiting property of a sequence of estimators with uniformity property.” Ann. Inst. Statist. Math. 22, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Ionescu Tulcea, A. and C. (1967). “On the existence of a lifting commuting with left translations of an arbitrary locally compact group.” Proc. 5th Berkeley Symp. Math. Statist. Probab. Vol. 11, 63–97.

    Google Scholar 

  • Jeganathan, P. (1981). “On a decomposition of the limit distribution of a sequence of estimators.” Sankhya Vol. 43, Series A, pt. 1, 26–36.

    MathSciNet  MATH  Google Scholar 

  • Le Cam, L. (1972). “Limits of experiments.” Proc. 6th Berkeley Symp. Math. Statist. Probab. Vol. I, 249–261.

    Google Scholar 

  • Le Cam, L. (1975). “Construction of asymptotically sufficient estimates in some non-Gaussian situations.” Proc. IASPS Satellite Symposium on Asymptotic Methods in Statistics. J. Hajek ed. Prague.

    Google Scholar 

  • Le Cam, L. (1986). Asymptotic methods in statistical decision theory. Springer Verlag. New York, Heidelberg, Berlin.

    MATH  Google Scholar 

  • Luschgy, H. (1987). “Comparison of shift experiments on a Banach space.” Mathematical Statistics and Probability. M. L. Puri et al (eds). Vol. A, 217–230. Reidel Pub. Co.

    MathSciNet  Google Scholar 

  • Millar, P. W. (1985). “Nonparametric applications of an infinite dimensional convolution theorem.” Z. Wahrsch. verw. Gebiete 68, 545–556.

    Article  MathSciNet  MATH  Google Scholar 

  • Moussatat, W. (1976). “On the asymptotic theory of statistical experiments and some of its applications.” Unpublished Ph.D. Thesis. University of California, Berkeley.

    Google Scholar 

  • Paterson, A. L. T. (1983). “Amenability and translation experiments.” Canadian J. Math. 25, 49–58.

    Article  MathSciNet  Google Scholar 

  • Pollard, D. (1990). Private communications, Summer 1990.

    Google Scholar 

  • Prakasa Rao, B. L. S. (1968). “Estimation of the location of the cusp of a continuous density.” Ann. Math. Statist. 39, 76–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Roussas, G. G. (1972). Contiguous Probability measures: Some applications in Statistics. Cambridge Univ. Press.

    Google Scholar 

  • Schwartz, L. Radon measures an arbitrary Topological spaces and cylindrical measures. Oxford University Press. (See pages 74 and 174).

    Google Scholar 

  • Torgersen, E. N. (1972). “Comparison of translation experiments.” Ann. Math. Stat. 43, 1383–1399.

    Article  MathSciNet  MATH  Google Scholar 

  • Torgersen, E. N. (1991). Comparison of Statistical Experiments. Cambridge Univ. Press. xx + 675 pages.

    Google Scholar 

  • van der Vaart, A. (1989). Statistical estimation in large parameter spaces CWI Tract #44. Centre for Mathematics and Computer Science. Amsterdam.

    Google Scholar 

  • van der Vaart, A. (1991). “An asymptotic representation theorem.” Internat. Statist. Review 58, 97–121.

    Article  Google Scholar 

  • Wendel, J. G. (1952). “Left centralizers and isomorphisms of group algebras.” Pacific J. Math. 2, #3, 251–261.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Le Cam, L. (1994). An Infinite Dimensional Convolution Theorem. In: Gupta, S.S., Berger, J.O. (eds) Statistical Decision Theory and Related Topics V. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2618-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2618-5_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7609-8

  • Online ISBN: 978-1-4612-2618-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics