Skip to main content

Minimaxity, More or Less

  • Conference paper

Abstract

This is a historical study of the minimax idea in statistics and of its creator, Abraham Wald. The focus is on the place of minimaxity in the development of statistics over the last half century.

In formal terms minimaxity is an objective criterion which severely restricts the class of acceptable statistical decision procedures. However, this was not how Wald and his close collaborators came to view it, nor has it proved to serve this function. Rather, minimaxity has been a vital organizing theme in many areas of statistics.

Following the brief historical study of Wald himself and of his development of the minimax idea we look at some of the statistical problems in which minimaxity has played a key role as an organizing theme. These areas include asymptotic statistical theory, the Fibonacci search algorithm, robust Bayes analysis, robust estimation, optimum design, and nonparametric function estimation.

Informal discussion with many colleagues has provided helpful input to this study. I particularly want to thank Jim Berger, Peter Bickel and David Siegmund.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, J. O. (1984). The robust Bayesian viewpoint (with discussion) Robustness of Bayesian Analysis J. Kadane, North Holland, Amsterdam.

    Google Scholar 

  • Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, Second edition, Springer-Verlag.

    Google Scholar 

  • Borel, E. (1921). La theorie du jeu et les équations intégrales à noyan symetrique, Comptes Rendus Acad. Sciences 173, 1304–1308.

    MATH  Google Scholar 

  • Borel, E. (1924). Sur les jeux où interviennent l’hasard et l’habileté des joueurs, Théorie des Probabilities, 204–224.

    Google Scholar 

  • Brown, L. D. and Liu, R. C. (1991). A sharpened inequality concerning the hardest affine subproblem. Tech. Report, Cornell Statistics Center.

    Google Scholar 

  • Brown, L. D., Low, M. G. and Zhao, L. H. (1992). Anomalous behavior of fixed parameter asymptotic rates of convergence in nonparametric function estimation problems, Tech. Report Cornell Statistics Center.

    Google Scholar 

  • de la Garza, A. (1954). Spacing of information in polynomial regression, Ann. Math. Statist. 25, 123–130.

    Article  MATH  Google Scholar 

  • Donoho, D. L. and Johnstone, I. M. (1992). Muumax estimation via wavelet shrinkage, Technical Report, Department of Statistics, Stanford University.

    Google Scholar 

  • Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D (1993). Wavelet Shrinkage: Asymptotia? Technical Report No. 419, Department of Statistics, Stanford University.

    Google Scholar 

  • Donoho, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence, III, Ann. Statist. 19, 668–701.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., Liu, R. C. and MacGibbon, B. (1990). Minimax risks for hyperrectangles and implications, Ann. Statist. 18, 1416–1437.

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, W., Lindman, H. and Savage, L. J. (1963). Bayesian statistical inference for psychological research, Psych. Rev. 70, 193–242.

    Article  Google Scholar 

  • Farrell, R. H. (1972). On the best obtainable rates of convergence in estimation of a density function at a point, Ann. Math. Statist. 43, 170–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics, Philos. Trans. Roy. Soc. London Ser. A 222, 309–368.

    Article  Google Scholar 

  • Fisher, R. A. (1955). Statistical methods and scientific induction, J. Roy. Statist. Soc. Ser. B 17, 69–78.

    MathSciNet  MATH  Google Scholar 

  • Frank, P. and Kiefer, J. (1951). Almost subminimax and biased minimax procedures, Ann. Math. Statist. 22, 465–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Frechet, M. (1953). Commentary on the three notes of Emile Borel (with discussion by J. von Neumann), Econometrica 21, 118–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Galil, Z. (1986). Commentary on Papers [8] and [20] Jack Carl Kiefer Supplementary Volume L. D. Brown, I. Olkin, J. Sacks and H. P. Wynn, Springer-Verlag, 1–3.

    Google Scholar 

  • Good, I. J. (1952). Rational decisions. J. Roy. Stat. Soc. ser. B 14, 107–114.

    MathSciNet  Google Scholar 

  • Guest, P. G. (1958). The spacing of observations in polynomial regression. Ann. Math. Statist. 29, 294–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges, J. L. Jr. and Lehmann, E. L. (1950). Some problems in minimax point estimation. Ann. Math. Statist. 21, 182–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges, J. L. Jr. and Lehmann, E. L. (1952). The use of previous experience in reaching statistical decisions. Ann. Math. Statist. 23, 396–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoel, P. G. (1958). Efficiency problems in polynomial estimation. Ann. Math. Statist., 29, 1134–1146.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35, 73–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Ibragimov, I. A. and Hasminskii, R. Z. (1981). On nonparametric estimation of the values of a linear functional in Gaussian white noise. Theory Probab. Appl. 29, 18–32.

    Article  Google Scholar 

  • Kiefer, J. C. (1953). Sequential minimax search for a maximum. Proc. Amer. Math. Soc. 41, 502–506.

    Article  MathSciNet  Google Scholar 

  • Kiefer, J. C. (1957). Optimum sequential search and approximation methods under minimum regularity conditions. J. Soc. Indust. Appl. Math. 5, 105–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J. C. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2, 849–879.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J. C. and Wolfowitz, J. (1959). Optimum designs in regression problems. Ann. Math. Statist. 30, 271–294.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J. C. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canad. J. Math. 12, 363–366.

    Article  MathSciNet  MATH  Google Scholar 

  • LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. Univ. of Calif. Pub. in Statist. 1, No. 11 277–330.

    Google Scholar 

  • Lehmann, E. L. and Hodges, J. L. Jr. (1952). The use of previous experience in reaching statistical decisions. Ann. Math. Statist. 23, 396–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Morgenstern, O. (1951). Abraham Wald 1902–1950. Econometrica 19, 360–367.

    Article  MathSciNet  Google Scholar 

  • Neyman, J. (1957). Inductive behavior as a basic concept of the philosophy of science. Rev. Intl. Statist. Inst. 25 7–22.

    Article  Google Scholar 

  • Neyman, J. and Pearson, E. S. (1933). The testing of statistical hypotheses in relation to probabilities a priori. Proc. Camb. Phil. Soc. 24, 492–510.

    Article  Google Scholar 

  • Parzen, E. (1962). On the estimation of a probability density function and the mode.. Ann. Math. Statist. 33, 1065–1076.

    Article  MathSciNet  MATH  Google Scholar 

  • Robbins, H. (1951). Asymptotically sub ax solutions of compound statistical decision problems. Proc. Second Berkeley Symp. Math. Statist. and Prob., 131–148.

    Google Scholar 

  • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27, 832–837.

    Article  MathSciNet  MATH  Google Scholar 

  • Sacks, J. and Ylvisaker, D. (1981). Asymptotically optimum kernels for density estimation at a port. Ann. Statist. 9, 334–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Savage, L. J. (1951). The theory of statistical decision. Jour. Amer. Statist. Assoc. 46, 55–67.

    Article  MATH  Google Scholar 

  • Savage, L. J. (1954). The Foundations of Statistics, Wiley and Sons (I used mostly the second revised edition, published by Dover, with copyright date 1972.)

    Google Scholar 

  • Savage, L. J. (1961). The foundations of statistics reconsidered. Proc. Fourth Berkeley Symp. Math. Statist. and Probab. 1575–586.

    Google Scholar 

  • Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12, 1–85.

    Google Scholar 

  • Tukey, J. W. (1960). A survey of sampling from contaminated distributions. Contributions to Probability and Statistics, Essays in Honor of Harold Hotelling, I. Olkin and others, 448–485.

    Google Scholar 

  • von Neumann, J. (1928). Zur theorie der Gesellschaftsspiele. Mathematische Annalen 100, 295–320.

    Article  MathSciNet  MATH  Google Scholar 

  • von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior, Princeton University.

    Google Scholar 

  • Wald, A. (1939). Contributions to the theory of statistical estimation and testing hypotheses. Ann. Math. Statist. 10, 299–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Wald, A. (1942). On the Principles of Statistical Inference, Notre Dame, IN.

    Google Scholar 

  • Wald, A. (1943). On the efficient design of statistical investigations Ann. Math. Statist. 14, 134–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Wald, A. (1950). Statistical Decision Functions, Wiley and Sons.

    Google Scholar 

  • Wolfowitz, J. (1951). On e-complete classes of decision functions. Ann. Math. Statist. 22, 461–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfowitz, J. (1952). Abraham Wald, 1902–1950. Ann. Math. Statist. 23, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Wynn, H. P. (1984). Jack Kiefer’s contributions to experimental design. Ann. Statist. 12, 416–423.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Brown, L.D. (1994). Minimaxity, More or Less. In: Gupta, S.S., Berger, J.O. (eds) Statistical Decision Theory and Related Topics V. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2618-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2618-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7609-8

  • Online ISBN: 978-1-4612-2618-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics