Skip to main content

Bacterial Secondary Production

  • Chapter
Microbial Ecology of Lake Plußsee

Part of the book series: Ecological Studies ((ECOLSTUD,volume 105))

Abstract

During the past decade ecologists have become more aware of the significant role that heterotrophic bacteria play in aquatic ecosystems. In both the water column and sediments of freshwater and marine systems, bacteria are thought to be the major decomposers of organic matter (Point and Morris 1982, Azam and Cho 1987, Münster and Chróst 1990, Chróst 1990; Chapter 6, this volume). Nowadays we accept that the production of bacterial biomass represents an important link among detritus, dissolved organic matter (DOM), and higher trophic levels in aquatic ecosystems. Important recent findings demonstrate that DOM → heterotrophic bacteria → protozoa → metazoa process as much energy as the classical grazing food chains. By virtue of their abundance, low substrate affinities, and potentially rapid growth rates, bacteria are capable of rapidly converting energetically low labile DOM into their biomass, i.e., high-quality bacterial particulate organic matter that can be utilized by bacterivorous protozoans and zooplankton (Pedrós-Alió and Brock 1983, Hessen and Andersen 1990, Pace et al. 1990). Moreover, bacterivores feeding on bacteria liberate a substantial amount of macromolecular DOM that is enzymatically degradable and utilizable by bacteria (Jumars et al. 1989, Nagata and Kirchman 1991, 1992; Chapter 6, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen HL (1976) Dissolved organic matter in lake water: Characteristics of molecular weight size-fractions and ecological implications. Oikos 27:64–70

    Article  CAS  Google Scholar 

  • Allen HL (1978) Low molecular weight dissolved organic matter in five softwater ecosystems: A preliminary study and ecological implications. Verh Int Ver Limnol 20:514–524

    Google Scholar 

  • Azam F, Cho BC (1987) Bacterial utilization of organic matter in the sea. In Fletcher M, Gray TRG, Jones JG (eds) Ecology of Microbial Communities. Cambridge University Press, Cambridge, pp 261–281

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstand F (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol Oceanogr 36:1078–1090

    Article  Google Scholar 

  • Barcina I, Ayo B, Unanue M, Egea L, Iriberri J (1992) Comparison of rates of flagellate bacterivory and bacterial production in a marine coastal system. Appl Environ Microbiol 58:3850–3856

    PubMed  CAS  Google Scholar 

  • Bell RT (1990) An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H]thymidine. Limnol Oceanogr 35:910–915

    Article  CAS  Google Scholar 

  • Bell RT, Kuparinen J (1984) Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl Environ Microbiol 48:1221–1230

    PubMed  CAS  Google Scholar 

  • Bell RT, Ahlgren GM, Ahlgren I (1983) Estimating bacterioplankton production by measuring [3H]thymidine incorporation in a eutrophic Swedish lake. Appl Environ Microbiol 45:1709–1721

    PubMed  CAS  Google Scholar 

  • Bergh Ø, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    Article  PubMed  CAS  Google Scholar 

  • Bratbak G (1985) Bacterial biovolume and biomass estimations. Appl Environ Microbiol 49:1488–1493

    PubMed  CAS  Google Scholar 

  • Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass estimations. Appl Environ Microbiol 48:755–757

    PubMed  CAS  Google Scholar 

  • Bratbak G, Heldal M, Norland S, Thingstad TF (1990) Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol 56:1400–1405

    PubMed  CAS  Google Scholar 

  • Bratbak G, Heldal M, Thingstad TF, Riemann B, Haslund OH (1992) Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar Ecol Prog Ser 83:273–280

    Article  Google Scholar 

  • Brock TD, Clyne J (1984) Significance of algal excretory products for growth of epilimnetic bacteria. Appl Environ Microbiol 47:731–734

    PubMed  CAS  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. BioScience 35:634–639

    Article  Google Scholar 

  • Chin-Leo G, Kirchman DL (1988) Estimating bacterial production in marine waters from simultaneous incorporation of thymidine and leucine. Appl Environ Microbiol 54:1934–1939

    PubMed  CAS  Google Scholar 

  • Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441–443

    Article  CAS  Google Scholar 

  • Cho BC, Azam F (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar Ecol Prog Ser 63:253–259

    Article  CAS  Google Scholar 

  • Chróst RJ (1978) The estimation of extracellular release and heterotrophic activity of aquatic bacteria. Acta Microbiol Pol 27:139–146

    PubMed  Google Scholar 

  • Chróst RJ (1981) The composition and bacterial utilization of DOC released by phytoplankton. Kiel Meeresforsch Sonderh 5:325–332

    Google Scholar 

  • Chróst RJ (1983) Plankton photosynthesis, extracellular release and bacterial utilization of released dissolved organic carbon (RDOC) in lakes of different trophy. Acta Microbiol Pol 32:275–287

    PubMed  Google Scholar 

  • Chróst RJ (1988) Phosphorus and microplankton development in a eutrophic lake. Acta Microbiol Pol 37:205–225

    Google Scholar 

  • Chróst RJ (1989) Characterization and significance of β-glucosidase in lake water. Limnol Oceanogr 34:660–672

    Article  Google Scholar 

  • Chróst RJ (1990) Microbial ectoenzymes in aquatic environments. In Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 47–78

    Google Scholar 

  • Chróst RJ (ed) (1991a) Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York

    Google Scholar 

  • Chróst RJ (1991b) Ectoenzymes in aquatic environments: Microbial strategy for substrate supply. Verh Int Ver Limnol 24:2597–2600

    Google Scholar 

  • Chróst RJ (1992) Significance of bacterial ectoenzymes in aquatic environments. Hydrobiologia 243/244:61–70

    Article  Google Scholar 

  • Chróst RJ, Faust MA (1983) Organic carbon release by phytoplankton: Its composition and utilization by bacterioplankton. J Plankton Res 5:477–493

    Article  Google Scholar 

  • Chróst RJ, Overbeck J (1989) Application of the isotope dilution principle to the determination of [14C]glucose incorporation by aquatic bacteria. Acta Microbiol Pol 38:75–89

    Google Scholar 

  • Chróst RJ, Overbeck J (1990) Substrate-ectoenzyme interaction: Significance of β-glucosidase activity for glucose metabolism by aquatic bacteria. Arch Hydrobiol Ergeb Limnol 34:93–98

    Google Scholar 

  • Chróst RJ, Rai H (1993) Ectoenzyme activity and bacterial secondary production in nutrient-impoverished and -enriched freshwater mesocosms. Microb Ecol 25:131–150

    Article  Google Scholar 

  • Chróst RJ, Siuda W (1978) Some factors affecting the heterotrophic activity of bacteria in a lake. Acta Microbiol Pol 27:129–138.

    PubMed  Google Scholar 

  • Chróst RJ, Overbeck J, Wcisło R (1988) Evaluation of the [3H]thymidine method for estimating bacterial growth rates and production in lake water: Re-examination and methodological comments. Acta Microbiol Pol 37:95–112

    Google Scholar 

  • Chróst RJ, Münster U, Rai H, Albrecht D, Witzel KP, Overbeck J (1989) Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. J Plankton Res 11:223–242

    Article  Google Scholar 

  • Chrzanowski TH, Hubbard JG (1988) Primary and bacterial secondary production in a Southwestern reservoir. Appl Environ Microbiol 54:661–669

    PubMed  Google Scholar 

  • Cole JJ, Likens GE, Strayer DL (1982) Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnol Oceanogr 27:1080–1090

    Article  CAS  Google Scholar 

  • Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  • Ducklow HW, Carlson CA (1992) Oceanic bacterial production. Adv Microb Ecol 12:113–181

    Google Scholar 

  • Ducklow HW, Purdie DA, Williams PJL, Davies JM (1986) Bacterioplankton: A sink for carbon in a coastal marine plankton community. Science 232:865–867

    Article  PubMed  CAS  Google Scholar 

  • Edwards RT, Meyer JL (1986) Production and turnover of planktonic bacteria in two Southwestern blackwater rivers. Appl Environ Microbiol 52:1317–1323

    PubMed  CAS  Google Scholar 

  • Fenchel T (1988) Marine plankton food chains. Annu Rev Ecol Syst 19:19–38

    Article  Google Scholar 

  • Fuhrman JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl Environ Microbiol 39:1085–1095

    PubMed  CAS  Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar Biol 66:109–120

    Article  Google Scholar 

  • Fukami K, Meier B, Overbeck J (1991) Vertical and temporal changes in bacterial production and its consumption by heterotrophic nanoflagellates in a north German eutrophic lake. Arch Hydrobiol 122:129–145

    Google Scholar 

  • Gardner W, Chandler JF, Laird GA, Scavia D (1986) Microbial response to amino acids additions in Lake Michigan: Grazer control and substrate limitation of bacterial populations. J Great Lakes Res 12:161–174

    Article  CAS  Google Scholar 

  • Gardner W, Chandler JF, Laird G A (1989) Organic nitrogen mineralization and substrate limitation of bacteria in Lake Michigan. Limnol Oceanogr 34:478–485

    Article  CAS  Google Scholar 

  • Golterman HL, Clymo RS (1969) Methods for Chemical Analysis of Freshwaters. IBP Handbook No 8. Blackwell Science Publishers, Oxford

    Google Scholar 

  • Hagström A, Larsson U, Horstedt P, Normark S (1979) Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol 37:805–812

    PubMed  Google Scholar 

  • Heldal M, Bratbak G (1991) Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser 72:205–212

    Article  Google Scholar 

  • Hessen DO, Andersen T (1990) Bacteria as a source of phosphorus for zooplankton. Hydrobiologia 206:217–223

    Article  CAS  Google Scholar 

  • Hollibaugh JT (1988) Limitations of the [3H]thymidine method for estimating bacterial productivity due to thymidine metabolism. Mar Ecol Prog Ser 43:19–30

    Article  CAS  Google Scholar 

  • Jeffrey WH, Paul JH (1990) Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates. Appl Environ Microbiol 56:1367–1372

    PubMed  CAS  Google Scholar 

  • Jørgensen NOG (1987) Free amino acids in lakes: Concentrations and assimilation rates in relation to phytoplankton and bacterial production. Limnol Oceanogr 32:97–111

    Article  Google Scholar 

  • Jumars PA, Penry DL, Baross JA, Perry MJ, Frost BW (1989) Closing the microbial loop: Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep Sea Res 36:483–495

    Article  CAS  Google Scholar 

  • Karl DM (1981) Simultaneous rates of ribonucleic acid and deoxyribonucleic acid syntheses for estimating growth and cell division of aquatic microbial communities. Appl Environ Microbiol 42:802–810

    PubMed  CAS  Google Scholar 

  • Kirchman DL (1992) Incorporation of thymidine and leucine in the subarctic Pacific: Application to estimating bacterial production. Mar Ecol Prog Ser 82:301–309

    Article  CAS  Google Scholar 

  • Kirchman DL, Ducklow H, Mitchell R (1982) Estimates of bacterial growth from changes in uptake rates and biomass. Appl Environ Microbiol 44:1296–1307

    PubMed  CAS  Google Scholar 

  • Kirchman DL, K’Nees E, Hodson RE (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607

    PubMed  CAS  Google Scholar 

  • Kirchman DL, Newell SY, Hodson RE (1986) Incorporation versus biosynthesis of leucine: Implications for measuring rates of protein synthesis and biomass production by bacteria in marine systems. Mar Ecol Prog Ser 32:47–59

    Article  CAS  Google Scholar 

  • Krogh AA, Lange E (1932) Quantitative Untersuchungen über Plankton, Kolloide und gelöste organische und anorganische Substanzen in dem Furesee. Int Rev Ges Hydrobiol 26:20–53

    Article  Google Scholar 

  • Kuuppo-Leinikki P (1990) Protozoan grazing on planktonic bacteria and its impact on bacterial population. Mar Ecol Prog Ser 63:227–238

    Article  Google Scholar 

  • Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303

    PubMed  CAS  Google Scholar 

  • Letarte Y, Pinel-Alloul B (1991) Relationships between bacterioplankton production and limnological variables: Necessity of bacterial size considerations. Limnol Oceanogr 36:1208–1216

    Article  Google Scholar 

  • Lovell CR, Konopka A (1985a) The effects of temperature on bacterial production in a dimictic eutrophic lake. FEMS Microbiol Lett 31:135–140

    Article  CAS  Google Scholar 

  • Lovell CR, Konopka A (1985b) Primary and bacterial production in two dimictic Indiana lakes. Appl Environ Microbiol 49:485–491

    PubMed  CAS  Google Scholar 

  • McDonough RJ, Sanders RW, Porter KG, Kirchman DL (1986) Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion. Appl Environ Microbiol 52:992–1000

    PubMed  CAS  Google Scholar 

  • McManus GB, Fuhrman J (1988) Control of marine bacterioplankton populations: Measurement and significance of grazing. Hydrobiologia 159:51–62

    Article  Google Scholar 

  • McQueen DJ, Post JP, Mills EL (1986) Trophic relationships in freshwater pelagic ecosystems. Can J Fish Aquat Sci 43:1571–1581

    Article  Google Scholar 

  • Moaledj K, Overbeck J (1980) Studies on uptake kinetics of oligocarbophilic bacteria. Arch Hydrobiol 89:303–312

    CAS  Google Scholar 

  • Moriarty DJW, Pollard PC (1981) DNA synthesis as a measure of bacterial productivity in seagrass sediments. Mar Ecol Prog Ser 5:151–156

    Article  Google Scholar 

  • Münster U (1991) Extracellular enzyme activity in eutrophic and polyhumic lakes. In Chróst RJ (ed) Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York, pp 96–122

    Google Scholar 

  • Münster U, Chróst RJ (1990) Origin, composition, and microbial utilization of dissolved organic matter. In Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 8–46

    Google Scholar 

  • Nagata T, Kirchman DL (1991) Release of dissolved free and combined amino acids by bacterivorous marine flagellates. Limnol Oceanogr 36:433–143

    Article  CAS  Google Scholar 

  • Nagata T, Kirchman DL (1992) Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar Ecol Prog Ser 83:233–240

    Article  CAS  Google Scholar 

  • Nalewajko C (1977) Extracellular release in freshwater algae and bacteria: Extracellular products of algae as a source of carbon for heterotrophs. In Cairns J (ed) Aquatic Microbial Communities. Garland, New York, pp 589–626

    Google Scholar 

  • Nalewajko C, Lee K, Fay P (1980) Significance of algal extracellular products to bacteria in lakes and in cultures. Microb Ecol 6:199–207

    Article  CAS  Google Scholar 

  • Ogura N (1974) Molecular weight fractionation of dissolved organic matter in coastal seawater by ultrafiltration. Mar Biol 24:305–312

    Article  CAS  Google Scholar 

  • Overbeck J (1965) Primärproduktion und Gewässerbakterien. Naturwissenschaften 6: 145–146

    Article  Google Scholar 

  • Overbeck J (1972) Experimentelle Untersuchungen zur Bestimmung der bakteriellen Produktion in Seen. Verh Int Verein Limnol 18:176–187

    Google Scholar 

  • Overbeck J (1974) Microbiology and biochemistry. Mitt Int Ver Limnol 20:198–228

    Google Scholar 

  • Overbeck J (1975) Distribution pattern of uptake kinetic responses in a stratified eutrophic lake (Plußsee ecosystem study). Verh Int Ver Limnol 19:2600–2615

    Google Scholar 

  • Overbeck J (1979a) Studies on heterotrophic functions and glucose metabolism of microplankton in Plußsee. Arch Hydrobiol Beih Ergeb Limnol 13:56–76

    CAS  Google Scholar 

  • Overbeck J (1979b) Dark CO2 uptake: Biochemical background and its relevance to in situ bacterial production. Arch Hydrobiol Beih Ergeb Limnol 12:38–47

    Google Scholar 

  • Overbeck J (1981) A new approach for estimating the overall heterotrophic activity in aquatic ecosystems. Verh Int Ver Limnol 21:1355–1358

    CAS  Google Scholar 

  • Overbeck J, Chróst RJ (eds) (1990) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York

    Google Scholar 

  • Pace ML, McManaus GB, Findlay SEG (1990) Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808

    Article  Google Scholar 

  • Pedros-Alió C, Brock TD (1982) Assessing biomass and production of bacteria in eutrophic Lake Mendota, Wisconsin. Appl Environ Microbiol 44:203–218

    PubMed  Google Scholar 

  • Pedros-Alió C, Brock TD (1983) The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwat Biol 13:227–239

    Article  Google Scholar 

  • Peterson BJ, Hobbie JE, Hancy JF (1978) Daphnia grazing on natural bacteria. Limnol Oceanogr 23:1039–1044

    Article  Google Scholar 

  • Point IR, Morris RJ (1982) The role of bacteria in the turnover of organic matter in the sea. Oceanogr Mar Biol Annu Rev 20:65–118

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Proctor LM, Fuhrman JA (1992) Mortality of marine bacteria in response to enrichments of the virus size fraction from seawater. Mar Ecol Prog Ser 87:283–293

    Article  Google Scholar 

  • Riemann B (1983) Biomass and production of phyto- and bacterioplankton in eutrophic Lake Tystrup, Denmark. Freshwat Biol 13:389–398

    Article  Google Scholar 

  • Riemann B, Søndergaard M (eds) (1986) Carbon Dynamics in Eutrophic, Temperate Lakes. Elsevier, Amsterdam

    Google Scholar 

  • Riemann B, Bjørnsen PK, Newell S, Fallon R (1987) Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H]thymidine. Limnol Oceanogr 32:471–476

    Article  CAS  Google Scholar 

  • Robarts RD, Sephton LM, Wicks RJ (1991) Labile dissolved organic carbon and water temperature as regulators of heterotrophic bacterial activity and production in the lakes of Sub-Antarctic Marion Island. Polar Biol 11:403–413

    Article  Google Scholar 

  • Romanenko VI, Overbeck J, Sorokin YI (1972) Estimation of production of heterotrophic bacteria using 14C. In Sorokin YI, Kadota H (eds) Techniques for the Assessment of Microbial Production and Decomposition in Freshwater. IBP Handbook 23. Blackwell Science Publishers, Oxford, pp 82–85

    Google Scholar 

  • Saunders GW (1977) Carbon flow in the aquatic systems. In Cairn J (ed) Aquatic Microbial Communities. Garland, New York, pp 417–440

    Google Scholar 

  • Scavia D, Laird GA, Fahnenstiel GL (1986) Production of planktonic bacteria in Lake Michigan. Limnol Oceanogr 31:612–626

    Article  Google Scholar 

  • Sell AF, Overbeck J (1992) Exudates: Phytoplankton-bacterioplankton interactions in Plußsee. J Plankton Res 14:1199–1215

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Article  Google Scholar 

  • Sherr E, Sherr B (1988) Role of microbes in pelagic food webs: A revised concept. Limnol Oceanogr 33:1225–1227

    Article  Google Scholar 

  • Simon M (1987) Biomass and production of small and large free-living and attached bacteria in Lake Constance. Limnol Oceanogr 32:591–607

    Article  CAS  Google Scholar 

  • Simon M (1991) Isotope dilution of intracellular amino acids as a tracer of carbon and nitrogen sources of marine planktonic bacteria. Mar Ecol Prog Ser 74:295–301

    Article  CAS  Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213

    Article  CAS  Google Scholar 

  • Simon M, Tilzer MM (1987) Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J Plankton Res 9:535–552

    Article  Google Scholar 

  • Simon M, Cho BC, Azam F (1992) Significance of bacterial biomass in lakes and the ocean: Comparison to phytoplankton biomass and biogeochemical implications. Mar Ecol Prog Ser 86:103–110

    Article  Google Scholar 

  • Siuda W, Wcisło R, Chróst RJ (1991) Composition and bacterial utilization of photosynthetically produced organic matter in an eutrophic lake. Arch Hydrobiol 121:473–484

    Google Scholar 

  • Stabel HH, Moaledj K, Overbeck J (1979) On the degradation of dissolved organic molecules from Plußsee by oligocarbophilic bacteria. Arch Hydrobiol Beih Ergeb Limnol 12:95–104

    CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A Practical Handbook of Seawater Analysis. Fish Research Board of Canada, Ottawa

    Google Scholar 

  • Sundh I (1992) Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl Environ Microbiol 58:2938–2947

    PubMed  CAS  Google Scholar 

  • Velimirov B, Walenta-Simon M (1992) Seasonal changes in specific growth rates, production and biomass of a bacterial community in the water column above a Mediterranean seagrass system. Mar Ecol Prog Ser 80:237–248

    Article  Google Scholar 

  • Wetzel RG, Rich PH, Miller MC, Allen HL (1972) Metabolism of dissolved and particulate detrital carbon in temperate, hard-water lake. Mem Ist Ital Idrobiol Suppl 29:185–243

    Google Scholar 

  • White PA, Kalff J, Rasmussen JB, Gasol JM (1991) The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb Ecol 21:99–118

    Article  Google Scholar 

  • Wikner J, Rassoulzadegan F, Hagström Å (1990) Periodic bacterivore activity balances growth in the marine environment. Limnol Oceanogr 35:313–324

    Article  Google Scholar 

  • Witzel KP (1990) Approaches to bacterial population dynamics. In Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 96–128

    Google Scholar 

  • Wright RT, Hobbie JE (1965) The uptake of organic solutes in lake water. Limnol Oceanogr 10:22–28

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chróst, R.J., Rai, H. (1994). Bacterial Secondary Production. In: Overbeck, J., Chróst, R.J. (eds) Microbial Ecology of Lake Plußsee. Ecological Studies, vol 105. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2606-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2606-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7604-3

  • Online ISBN: 978-1-4612-2606-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics