Phototrophic Bacteria in the Plußsee: Ecology of the Sulfuretum

  • Rita Oberhäuser-Nehls
  • Konstantinos Anagnostidis
  • Jürgen Overbeck
Part of the Ecological Studies book series (ECOLSTUD, volume 105)

Abstract

A eutrophic lake like the Plußsee is divided into the aerobic epilimnion, the metalimnion as defined by the thermocline, and the anaerobic hypolimnion. In the upper zone of the hypolimnion phototrophic sulfur bacteria are temporarily abundant if there is a supply of light and H2S. They are represented by the families Chromatiaceae (purple sulfur bacteria) and Chlorobiaceae (green sulfur bacteria). Their ability to oxidize reduced sulfur compounds without oxygen consumption is ecologically very important for the lake metabolism. In contrast to the phototrophic sulfur bacteria, the Rhodospirillaceae (purple nonsulfur bacteria) rarely occur in spectacular mass accumulations. In the dark part of the hypolimnion, moreover, a great variety of different colorless anaerobic bacteria are present; among them are sulfate reducers, which depend on a supply of substrate from phototrophic bacteria.

Keywords

Chlorophyll Selenium Photosynthesis Stratification Denitrification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åberg B, Rodhe W (1942) Über die Milieufaktoren in einigen südschwedischen Seen. Symp Bot Ups V 3:256Google Scholar
  2. Albrecht D (1973) Verbesserte Methoden zur automatischen Wasseranalyse in der Limnologie. Vom Wasser 41:129–135Google Scholar
  3. Albrecht D, Overbeck J (1969) Wasseranalysen in der Limnologie mit Hilfe des Technicon Auto-Analyzers. Technicon Wasserkolloquium, Bad Nauheim 1969:1–15Google Scholar
  4. Albrecht D, Münster U, Stabel HH (1978) Untersuchungen zum Stoffhaushalt des Plußsees. Verh Ges Ökol Kiel 1977:109–118Google Scholar
  5. Allgeier RJ, Hafford BC, Juday C (1941) Oxidation-reduction potentials and pH of lake waters and of lake sediments. Trans Wisc Acad Sci Arts Lett 33:115–133Google Scholar
  6. Anagnostidis K (1968) Untersuchungen über die Salz- und Süßwasser-Thiobiocönosen (Sulphuretum) Griechenlands. Wiss Jb Phys-Math Fak Univ Thessaloniki 10:406–860Google Scholar
  7. Anagnostidis K, Economou-Amilli A (1980) Limnological studies on Lake Pamvotis (Ioannina), Greece. I. Hydroclimatology, phytoplankton-periphyton with special reference to the valency of some microorganisms from sulfurate as bioindicators. Arch Hydrobiol 89:313–342Google Scholar
  8. Anagnostidis K, Komárek J (1988) Modern approach of the classification system of Cyanophytes. 3. Oscillatoriales. In Anagnostidis K, Golubic S, Komórek J, Lhotsky O (eds) Cyanophyta (Cyanobacteria) Morphology, Taxonomy, Ecology. Arch Hydrobiol Suppl 80, Algolog Stud 50–53:327–472Google Scholar
  9. Anagnostidis K, Overbeck J (1966) Methanoxidierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Ber Deutsch Bot Ges 79:163–174Google Scholar
  10. Baars JK (1930) Over Sulfaatreductie Door Bacterien. W. D. Meineman, Delft, HollandGoogle Scholar
  11. Baas-Becking LGM (1925) Studies on sulphur bacteria. Ann Bot 39:613–561Google Scholar
  12. Bavendamm W (1924) Die Farblosen und Roten Schwefelbakterien des Süß- und Salzwassers. Fischer, JenaGoogle Scholar
  13. Bergstein T, Henis Y, Cavari, BZ (1979) Investigations on the photosynthetic bacterium Chlorobium phaeobacteroides causing blooms in Lake Kinneret. Can J Microbiol 25:999–1007PubMedGoogle Scholar
  14. Biebl H (1973) Die Verbreitung der schwefelfreien Purpurbakterien im Plußsee und anderen Seen Ostholsteins. PhD Thesis, Freiburg, GermanyGoogle Scholar
  15. Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Mikrobiol 117:9–16Google Scholar
  16. Biebl H, Pfennig N (1979) Anaerobic CO2 uptake by phototrophic bacteria. A review. Arch Hydrobiol Beih Ergeb Limnol 12:48–58Google Scholar
  17. Blackburn TH, Kleiber P, Fenchel T (1975) Photosynthetic sulfide oxidation in marine sediments. Oikos 26:103–108Google Scholar
  18. Blauw TS (1988) Nitrogen fixation (acetylene reduction) in the sediments of the Pluss-See with special attention to the role of sedimentation. Arch Hydrobiol Suppl 81:359–489Google Scholar
  19. Broch-Due M, Ormerod JG, Strand Fjerdingen B (1978) Effect of light intensity on vesicle formation in Chlorobium. Arch Microbiol 116:269–274PubMedGoogle Scholar
  20. Buchanan RE, Gibbons NE (1974) (eds) Bergey’s Manual of Determinative Bacteriology, 8th ed. Williams & Wilkins, BaltimoreGoogle Scholar
  21. Butlin KR, Adams ME, Thomas M (1949) The isolation and cultivation of sulfate-reducing bacteria. J Gen Microbiol 3:46–59PubMedGoogle Scholar
  22. Caldwell DE, Tiedje JM (1975a) A morphological study of anaerobic bacteria from the hypolimnion of two Michigan lakes. Can J Microbiol 21:362–376PubMedGoogle Scholar
  23. Caldwell DE, Tiedje, JM (1975b) The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can J Microbiol 21:377–385PubMedGoogle Scholar
  24. Campbell S (1985) “Oscillatoria limnetica” from Solar Lake, Sinai is a Phormidium (Cyanophyta or Cyanobacteria). Arch Hydrobiol Suppl 71, Algolog Stud 38/39:175–190Google Scholar
  25. Cappenberg TE (1972) Ecological observations on heterotrophic, methane oxidizing and sulfate reducing bacteria in a pond. Hydrobiologia 40:471–485Google Scholar
  26. Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537Google Scholar
  27. Chróst RJ (1988) Phosphorus and microplankton development in a eutrophic lake. Acta Microbiol Pol 37:205–225Google Scholar
  28. Chróst RJ, Overbeck J (1987) Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plußsee (north German eutrophic lake). Microb Ecol 13:229–249Google Scholar
  29. Clark AE, Walsby AE (1978a) The occurrence of gas-vacuolate bacteria in lakes. Arch Microbiol 118:223–228Google Scholar
  30. Clark AE, Walsby AE (1978b) The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Arch Microbiol 118:229–233Google Scholar
  31. Cohen Y, Jørgensen BB, Padan E, Shilo M (1975a) Sulphide-dependent anoxigenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–492Google Scholar
  32. Cohen Y, Padan E, Shilo M (1975b) Facultative anoxygenie photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861PubMedGoogle Scholar
  33. Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai). 2. Distribution of photosyn-thetic microorganisms and primary production. Limnol Oceanogr 22:609–620Google Scholar
  34. Culver DA, Brunskill GJ (1969) Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in ameromictic lake. Limnol Oceanogr 14:862–873Google Scholar
  35. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung (1975) Verlag Chemie, WeinheimGoogle Scholar
  36. Drews G (1991) Cytology and morphogenesis in the prokaryotic cell. Prog Bot 52:1–9Google Scholar
  37. Drews G, Imhoff JF (1991) Phototrophic purple bacteria. In Variations in Autotrophic Life. Academic Press, London, pp 51–97Google Scholar
  38. Dubinina GA, Gorlenko VM, Suleimanov YI (1973) A study of microorganisms involved in the circulation of manganese, iron, and sulfur in meromictic Lake Gek-Gel. Microbiology 42:918–924PubMedGoogle Scholar
  39. Durner G, Römer R, Schwartz W (1965) Untersuchungen über die Lebensgemeinschaften des Sulphuretums. Z Allg Mikrobiol 5:106–221Google Scholar
  40. Fenchel T, Straarup BJ (1971) Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22:172–182Google Scholar
  41. Fjerdingstad E (1979) Sulfur bacteria. ASTM Special Technical Publication 650. ASTM, WashingtonGoogle Scholar
  42. Gloe A, Pfennig N, Brockmann H, Trowitzsch W (1975) A new bacterial chlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103–109PubMedGoogle Scholar
  43. Gocke K (1977) Heterotrophic activity. In Rheinheimer G (ed) Microbial Activity of a Brackish Water Environment. Springer-Verlag, Heidelberg, pp 198–222Google Scholar
  44. Golachowska JB (1979) Phosphorus forms and their seasonal changes in water and sediments of Lake Plußsee. Arch Hydrobiol 86:217–241Google Scholar
  45. Gorlenko VM (1970) A new phototrophic green sulfur bacterium—Prosthecochloris aestuarii nov. gen. nov. spec. Z Allg Mikrobiol 10:147–149PubMedGoogle Scholar
  46. Gorlenko VM, Kusnetzow SI (1971) Vertical distribution of photosynthetic bacteria in the Konon’er Lake of the Mari ASSR. Microbiology 40:651–652Google Scholar
  47. Gorlenko VM, Kusnetzow SI (1972) Über die photosynthetisierenden Bakterien des Kononjer-Sees. Arch Hydrobiol 70:1–13Google Scholar
  48. Gorlenko VM, Lebedeva EV (1971) New green sulfur bacteria with appendages. Microbiology 40:1035–1039PubMedGoogle Scholar
  49. Gorlenko VM, Lokk SI (1979) Vertical distribution and characteristics of species composition of microorganisms in several stratified lakes in Estonia, USSR. Microbiology 48:283–290Google Scholar
  50. Gorlenko VM, ZhilinaTW (1968) Study on the ultrastructure of green sulfur bacteria, strain SK-413. Microbiology 37:892–897Google Scholar
  51. Gorlenko VM, Chebotarev EN, Kachalkin VI (1973) Microbiological processes of oxidation of hydrogen sulfide in the Repnoe Lake (Slavonic Lakes). Microbiology 42:643–646Google Scholar
  52. Gorlenko VM, Vainstein MB, Kachalkin VI (1978) Microbiological characteristic of Lake Mogilnoye. Arch Hydrobiol 81:475–492Google Scholar
  53. Gorlenko VM, Dubinina GA, Kuznetsov SI (eds) (1983) The Ecology of Aquatic Microorganisms. Schweizerbart, StuttgartGoogle Scholar
  54. Guerrero E, Montesinos E, Pedrós-Alió C, et al. (1985) Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30:919–931Google Scholar
  55. Häusler J (1982) Schizomycetes. In Ettl H, Gerloff J, Heynig H (eds) Süßwasserflora von Mitteleuropa, 20, Fischer, Stuttgart, p 558Google Scholar
  56. Hirsch P (1989) “Pelonemataceae” Skuja 1956. In Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology 3. Williams & Wilkins, Baltimore, pp 2112–2118Google Scholar
  57. Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201Google Scholar
  58. Jørgensen BB, Kuenen JG, Cohen Y (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24:799–822Google Scholar
  59. Kämpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135Google Scholar
  60. Koppe F (1924) Die Schlammflora der ostholsteinischen Seen und des Bodensees. Arch Hydrobiol 14:619–672Google Scholar
  61. Krumbein WE, Buchholz H, Franke P, Giani D, Giele C, Wonneberger K (1979) O2 and H2S coexistence in stromatolites. A model for the origin of mineralogical lamination in stromatolites and banded iron formations. Naturwissenschaften 66:381–389Google Scholar
  62. Kusnetzow SI (1958) A study of the size of bacterial populations and of organic matter formation due to photo- and chemosynthesis in water bodies of different types. Verh Int Ver Limnol 13:156–169Google Scholar
  63. Lauterborn R (1913) Zur Kenntnis einiger sapropelischer Schizomyceten. Allg Bot Z 19:97–100Google Scholar
  64. Lauterborn R (1915) Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlammes natürlicher Gewässer. Verh Naturhist Med Ver Heidelberg 13:395–481Google Scholar
  65. Lawrence JR, Haynes RC, Hammer UT (1978) Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verh Int Ver Limnol 20:201–207Google Scholar
  66. Lindholm T (1987) Ecology of photosynthetic prokaryotes with special reference to meromictic lakes and coastal lagoons. Acta Acad Aboensis 47:13–27Google Scholar
  67. Maiden, MFI, Jones JG (1984) Gleding motility of Peloploca spp., and their distribution in the sediment and water column of a eutrophic lake. Arch Microbiol 140:44–49Google Scholar
  68. Mechsner K (1957) Physiologische und morphologische Untersuchungen an Chlorobakterien. Arch Mikrobiol 26:32–51PubMedGoogle Scholar
  69. Montesinos E, Guerrero R, Abella C, Esteve I (1983) Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl Environ Microbiol 46:1007–1016PubMedGoogle Scholar
  70. Oberhäuser R (1981) Untersuchungen über die hypolimnische Schwefelbakterien-Vegetation in zwei ostholsteinischen Seen. PhD Thesis, KielGoogle Scholar
  71. Ohle W (1953) Der Vorgang rasanter Seenalterung in Holstein. Naturwissenschaften 40:153–162Google Scholar
  72. Ohle W (1954) Sulfat als “Katalysator” des limnischen Stoffkreislaufes. Vom Wasser 21: 13–32Google Scholar
  73. Ohle W (1962) Der Stoffhaushalt der Seen als Grundlage einer allgemeinen Stoffwechseldynamik der Gewässer. Kiel Meeresforsch 18:107–120Google Scholar
  74. Ohle W (1964) Interstitiallösungen der Sedimente, Nährstoffgehalt des Wassers und Primärproduktion des Phytoplanktons in Seen. Helg Wiss Meeresunters 10:411–429Google Scholar
  75. Olah J, Biebl H, Overbeck J (1973) Photoorganotrophic utilization of acetate in a stratified eutrophic lake. Hidrol Közl 1973:21–27Google Scholar
  76. Overbeck J (1967) Zur Bakteriologie des Süßwassersees—Ergebnisse und Probleme. Gas Wasserfach 108:1258–1260Google Scholar
  77. Overbeck J (1968) Bakterien im Gewässer—Ein Beispiel für die gegenwärtige Entwicklung der Limnologie. Mitt Max-Planck-Ges 3:165–182Google Scholar
  78. Overbeck J (1972) Zur Struktur und Funktion des aquatischen Ökosystems. Ber Dtsch Bot Ges 85:553–577Google Scholar
  79. Overbeck J (1973) Über die Kompartimentierung der stehenden Gewässer—Ein Beitrag zur Struktur und Funktion des limnischen Ökosystems. Verh Ges Ökol, Saarbrücken 1973:211–223Google Scholar
  80. Overbeck J (1975) Distribution pattern of uptake response in a stratified eutrophic lake (Plußsee ecosystem study IV). Verh Int Ver Limnol 19:2600–2615Google Scholar
  81. Overbeck J (1979) Studies on heterotrophic functions and glucose metabolism of microplankton in Plußsee. Arch Hydrobiol Beih Ergeb Limnol 13:56–76Google Scholar
  82. Parkin TB, Brock TD (1980a) Photosynthetic bacterial production in lakes: The effects of light intensity. Limnol Oceano gr 25:711–718Google Scholar
  83. Parkin TB, Brock TD (1980b) The effects of light quality on the growth of phototrophic bacteria in lakes. Arch Microbiol 125:19–27Google Scholar
  84. Parkin TB, Brock TD (1981) Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch Hydrobiol 91:366–382Google Scholar
  85. Parsons TR, Strickland JDH (1962) On the production of particulate organic carbon by heterotrophic processes in sea water. Deep Sea Res 8:211–222Google Scholar
  86. Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralbl Bakteriol Suppl 1:179–189, 503–505Google Scholar
  87. Pfennig N (1967) Photosynthetic bacteria. Annu Rev Microbiol 21:285–324PubMedGoogle Scholar
  88. Pfennig N (1975) The phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43:1–16Google Scholar
  89. Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In Clayton RK, Sistrom R (eds) The Photosynthetic Bacteria. Plenum Press, New York, pp 3–18Google Scholar
  90. Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In Schlegel HG Bowien B (eds) Autotrophic Bacteria. Science Tech, Madison, Wisconsin, pp 97–116Google Scholar
  91. Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Procaryotes. Springer-Verlag, Berlin, pp 279–289Google Scholar
  92. Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology 3. Williams & Wilkins, Baltimore, pp 1635–1761Google Scholar
  93. Postgate JR (1963) Versatile medium for the enumeration of sulphate-reducing bacteria. Appl Microbiol 11:265–267PubMedGoogle Scholar
  94. Postgate JR (1965) Enrichment and isolation of sulphate-reducing bacteria. Zentralbl Bakteriol Abt I Suppl 1:190–197Google Scholar
  95. Postgate JR (1967) Media for sulfur bacteria. Lab Pract 15:1239–1244Google Scholar
  96. Postgate JR (1979) The Sulfate-Reducing Bacteria. Cambridge University Press, CambridgeGoogle Scholar
  97. Postgate JR, Campbell LL (1966) Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30:732–738PubMedGoogle Scholar
  98. Reck E (1987) Zur Ökologie der pelagischen Ciliaten des Plußsees. PhD Thesis, University of Kiel, GermanyGoogle Scholar
  99. Schlegel HG, Pfennig N (1961) Die Anreicherungskultur einiger Schwefelpurpurbakterien. Arch Mikrobiol 38:1–39PubMedGoogle Scholar
  100. Schmidt WD (1979) Morphologie und Physiologie manganoxidierender Mikroorganismen—Kultur- und in situ-Untersuchungen zur ökologisch-mikrobiologischen Charakterisierung von Metallogenium sp. und Siderocapsa geminata im Plußsee. PhD Thesis, University of KielGoogle Scholar
  101. Schmidt WD, Overbeck J (1984) Studies of “iron bacteria” from Lake Pluss. 1. Morphology, finestructure and distribution of Metallogenium sp. and Siderocapsa geminata. Z Allg Mikrobiol 24:329–339Google Scholar
  102. Schwartz W (1958) Die Schwefelspezialisten unter den Mikroorganismen. In Ruhland W (ed) Handbuch der Pflanzenphysiologie IX. Springer-Verlag, Berlin, pp 89–102Google Scholar
  103. Sirevåg R (1975) Photoassimilation of acetate and metabolism of carbohydrate in Chlorobium thiosulphatophilum. Arch Microbiol 104:105–111PubMedGoogle Scholar
  104. Skuja H (1956) Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Reg Soc Sci Ups Ser IV 16(3):1–404Google Scholar
  105. Skuja H (1964) Grundzüge der Algenflora und Algenvegetation der Fjeldgegenden um Abisko in Schwedisch-Lappland. Nova Acta Reg Soc Sci Ups Ser 4 18:1–4465Google Scholar
  106. Skuja H (1974) Family Pelonemataceae. In Buchanan RE, Gibbons NE (eds) Bergey’s Manual of Determinative Bacteriology, 8th ed. Williams & Winkins, Baltimore, pp 122—127Google Scholar
  107. Smith RL, Klug MJ (1981) Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments. Appl Environ Microbiol 42:116–121PubMedGoogle Scholar
  108. Sorokin YI (1966a) Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria. Microbiology 35:643–647Google Scholar
  109. Sorokin YI (1966b) Investigation of the structural metabolism of sulfate-reducing bacteria with 14C. Microbiology 35:806–814Google Scholar
  110. Sorokin YI (1966c) Role of carbon dioxide and acetate in biosynthesis by sulfate-reducing bacteria. Nature 210:551–552PubMedGoogle Scholar
  111. Sorokin YI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66:391–446Google Scholar
  112. Sorokin YI (1972) The bacterial population and the process of hydrogen sulphide oxidation in the Black Sea. J Cons Int Explor Mer 34:423–454Google Scholar
  113. Sorokin YI, Donato N (1975) On the carbon and sulphur metabolism in the meromictic Lake Faro (Sicily). Hydrobiologia 47:241–252Google Scholar
  114. Staley J (1968) Prosthecomicrobium and Ancalomicrobium: New prosthecate fresh water bacteria. J Bacterid 95:1921–1942Google Scholar
  115. Starkey RL (1938) A study of spore formation and other morphological characteristics of Vibrio desulfuricans. Arch Mikrobiol 9:268–304Google Scholar
  116. Steenbergen CLM (1982) Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten. Hydrobiologia 95:59–64Google Scholar
  117. Steenbergen CLM, Korthals HJ (1982) Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnol Oceanogr 27:883–895Google Scholar
  118. Stumm W (1967) Redox potential as an environmental parameter; conceptual significance and operational limitation. In Jaag O (ed) Advances in Water Pollution Research, Vol 1. Pergamon Press, Oxford, pp 283–308Google Scholar
  119. Takahashi M, Ichimura S (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol Oceanogr 13:644–655Google Scholar
  120. Takahashi M, Ichimura S (1970) Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol Oceanogr 15:929–944Google Scholar
  121. Tindall BJ, Grant WD (1986) The anoxygenic phototrophic bacteria. In Barnes EM, Mead GC (eds) Anaerobic Bacteria in Habitats Other Than Man. Blackwell Science Publishers, Oxford, p 444Google Scholar
  122. Trüper HG, Genovese S (1968) Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnol Oceanogr 13:225–232Google Scholar
  123. Trüper HG, Pfennig N (1971) Family of phototrophic green sulfur bacteria: Chlorobiaceae Copeland, the correct family name; rejection of Chlorobacterium Lauterborn; and the taxonomic situation of the consortium-forming species. Int J Syst Bacteriol 21:8–10Google Scholar
  124. Utermöhl H (1924) Phaeobakterien (Bakterien mit braunen Farbstoffen). Biol Zentralbl 43:605–610Google Scholar
  125. Utermöhl H (1925) Limnologische Phytoplanktonstudien. Arch Hydrobiol Suppl 5:1–527Google Scholar
  126. Van Ert M, Staley JT (1971) Gas vacuolated strains of Microcyclus aquaticus. J Bacteriol 108:236–240PubMedGoogle Scholar
  127. Van Ert M, Staley JT (1972) Anew gas vacuolated heterotrophic rod from fresh waters. Arch Mikrobiol 80:70–77Google Scholar
  128. Van Gemerden H (1967) On the bacterial sulfur cycle of inland waters. PhD Thesis, University of Leiden, The NetherlandsGoogle Scholar
  129. Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294Google Scholar
  130. Van Gemerden H (1987) Competition between purple sulfur bacteria and green sulfur bacteria: Role of sulfide, sulfur and poly sulfides. In Lindholm T (ed) Ecology of Photosynthetic Procaryotes with Special Reference to Meromictic Lakes and Coastal Lagoons. Abo Academy Press, Abo, pp 13–27Google Scholar
  131. Van Gemerden H, Beeftink HH (1981) Coexistence of Chlorobium and Chromatium in a sulfide-limited continuous culture. Arch Microbiol 129:32–34Google Scholar
  132. Van Gemerden H, Beeftink HH (1983) Ecology of phototrophic bacteria. In Ormerod JG (ed) The Phototrophic Bacteria: Anaerobic Life in the Light. Blackwell Science Publishers, Oxford, pp 146–185Google Scholar
  133. Van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Arch Mikrobiol 3:1–112Google Scholar
  134. Van Niel CB (1944) The culture, general physiology, morphology and classification of the non-sulphur purple and brown bacteria. Bacteriol Rev 8:1–118PubMedGoogle Scholar
  135. Van Niel CB (1957) Suborder I. Rhodobacteriinae. In Breed RS, Murray EGD, Smith NR (eds) Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore, pp 35–66Google Scholar
  136. Veldhuis MJW, van Gemerden H (1986) Competition between purple and brown phototrophic bacteria in stratified lakes: Sulfide, acetate, and light as limiting factors. FEMS Microbiol Ecol 38:31–38Google Scholar
  137. Vincent WF (1980a) The physiological ecology of a Scenedesmus population in the hypolimnion of a hypertrophic pond. I. Photoautotrophy. Br Phycol J 15:27–34Google Scholar
  138. Vincent WF (1980b) The physiological ecology of a Scenedesmus population in the hypolimnion of a hypertrophic pond. II. Heterotrophy. Br Phycol J 15:35–41Google Scholar
  139. Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36:1–32PubMedGoogle Scholar
  140. Walsby AE (1974) The identification of gas vacuoles and their abundance in the hypolimnetic bacteria of Arco Lake, Minnesota. Microb Ecol 1:51–61Google Scholar
  141. Walsby AE (1981) Gas-vacuolate bacteria (apart from cyanobacteria). In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Prokaryotes. 1. Springer-Verlag, Berlin, pp 441–447Google Scholar
  142. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. PhD Thesis, University of GöttingenGoogle Scholar
  143. Widdel F, Pfennig N (1977) A new anaerobic, sporing acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112:119–122PubMedGoogle Scholar
  144. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400PubMedGoogle Scholar
  145. Wright RT (1978) Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl Environ Microbiol 36:297–305PubMedGoogle Scholar
  146. Wright RT, Hobbie JE (1965) The uptake of organic solutes in lake water. Limnol Oceanogr 10:22–28Google Scholar
  147. Wright RT, Hobbie JE (1966) Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47:447–464Google Scholar
  148. ZoBell CE (1946) Studies on redox potential of marine sediments. Bull Am Assoc Pet Geol 30:477–513Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Rita Oberhäuser-Nehls
  • Konstantinos Anagnostidis
  • Jürgen Overbeck

There are no affiliations available

Personalised recommendations