Trees: Nutrition

  • Bjørn Tveite
  • Gunnar Abrahamsen
  • Magne Huse
Part of the Ecological Studies book series (ECOLSTUD, volume 104)

Abstract

Most hypotheses on effects of acid precipitation on trees include effects on nutrient status. There may be direct effects by foliar leaching, imbalances in the nutrient supply due to increased loss of plant nutrients from soil or increased atmospheric supply of sulfur and nitrogen, or reduced uptake of nutrients due to toxic compounds in the soil. The studies reporated here are focused on the effects of experimental acidification by sulfuric acid added to groundwater. The artificial “rain” did not contain any extra N in excess of what was found in the groundwater. The experiments can therefore not answer questions about possible nutrient imbalances caused by increased N availability concurrent with reduced availability of other nutrients.

Keywords

Zinc Phosphorus Magnesium Manganese Boron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen G, Bjor K, Horntredt R, Tveite B (1976) Effects of acid precipitation on coniferous forest. In: Brække FH (ed) Impact of acid precipitation on forest and freshwater ecosystems in Norway. (SNSF Project FR 6/76) Oslo-Ås, pp 37–63.Google Scholar
  2. Abrahamsen G, Tveite B, Stuanes AO (1987) Wet acid deposition effects on soil properties in relation to forest growth. Experimental results. In: Lavender D (ed) Woody plant growth in a changing physical and chemical environment. (Proceedings of the workshop of IUFRO working party on Shoot Growth Physiology, S2.01–11), Forest Sciences Department, University of British Columbia, Vancouver, Canada, pp 189–197.Google Scholar
  3. Bergmann W (1988) Ernährungsstörungen bei Kulturpflanzen. Gustav Fischer Verlag, Stuttgart and New York.Google Scholar
  4. Derome J, Kukkola M, Mälkönen E (1986) Forest liming on mineral soils. (Report 3084) National Swedish Environmental Protection Board, Solna, Sweden.Google Scholar
  5. Everard J (1973) Foliar analysis: sampling methods, interpretation and application of the results. Quart J For 67:51–66.Google Scholar
  6. Foerst K, Sauter U, Neuerburg W (1987) Bericht zur Ernährungszustand der Wälder in Bayern und über die Anlage von Walddüngungsversuchen. Forstl. Forschungsberichte München vol 79.Google Scholar
  7. Heinsdorf D, Krauss HH, Hippeli P (1988) Ernährungs- und bodenkundliche Untersuchungen in Fichtenbeständen des mittleren Thüringer Waldes unter berücksichtigung der in den letzten Jahren aufgetretenen Umweltbelastungen. Beitr Forstw 22:160–167.Google Scholar
  8. Herman F (1992) Nähr- und Schadstoffgehalte der Nadelproben des Höhenprofiles Zillertal. FBVA-Berichte (Austria) 67:79–85.Google Scholar
  9. Hüttl RF (1991) Die Nährelementversorgung geschädigter Wälder in Europa und Nordamerika. Freiburger bodenkundliche Abhandlungen 28. Institut für Bodenkunde und Waldernährungslehre der Albert-Ludwigs-Universität Freiburg in Breisgau, Freiburg im Breisgau.Google Scholar
  10. Hüttl RF, Mehne BM (1988) “New type” of forest decline, nutrient deficiencies and the “virus” hypothesis. In: Mathy P (ed) Air pollution and ecosystems. D. Reidel, Dordrecht, pp 870–873.Google Scholar
  11. Ingestad T (1962) Macro element nutrition of pine, spruce, and birch seedlings in nutrient solutions. Medd St Skogsforsk 51(7):1–150.Google Scholar
  12. Ingestad T (1979) Mineral nutrient requirements of Pinus silvestris and Picea abies seedlings. Physiol Plant 45:373–380.CrossRefGoogle Scholar
  13. Kreutzer K, Pröbstle P (1991) Einfluss von saurer Beregnung und Kalkung auf Ernährungszustand und Streufall von Altfichten. In: Kreutzer K, Göttlein A (eds) Ökosystemforschung Höglwald. (Forstliche Forschungen 39) Paul Parey, Hamburg and Berlin, pp 35–40.Google Scholar
  14. Kreutzer K, Göttlein A, Pröbstle P, Zuleger M (1991) Höglwaldforschung 1982–1989. Zielsetzung, Versuchskonzept, Basisdaten. In: Kreutzer K, Göttlein A (eds) Ökosystemforschung Höglwald. (Forstliche Forschungen 39) Paul Parey, Hamburg and Berlin, pp 11–21.Google Scholar
  15. Morrison IK (1974) Mineral nutrition of conifers with special reference to nutrient status interpretation: a review of literature. (Canada Forest Service Publ. 1343) Ottawa.Google Scholar
  16. Nebe W, Ilgen G, Leube F, Hofmann W, Stranzky N, Fiedler HJ (1987) Ernährung von Fichtenbeständen bei qualitativ unterschiedlichen Immissionen Beitr Forstw 21:77–84.Google Scholar
  17. Ogner G, Haugen A, Opem M, Sjøtveit G Sørlie B (1975) The chemical analysis program at The Norwegian Forest Research Institute (in Norwegian). Medd Nor Inst Skogforsk 32(6):209–232.Google Scholar
  18. Ogner G, Haugen A, Opem M, Sjøtveit G, Sørlie B (1984) The chemical analysis program at The Norwegian Forest Research Institute, 1984. Norwegian Forest Research Institute, Ås, Norway.Google Scholar
  19. Ogner G, Opem M, Remedios G, Sjøtveit G, Sørlie B (1991) The chemical analysis program of The Norwegian Forest Research Institue, 1991. Norwegian Forest Research Institue, Ås, Norway.Google Scholar
  20. Pettersson F (1992) Träden tål kraftig markförsurning. [Trees can resist heavy soil acidification.] (Information växtnäring-skogsproduktion Nr 3 1991/92) Inst för skogsförbättring Uppsala, Sweden.Google Scholar
  21. Reemtsma JB (1986) Der Magnesium-Gehalt von Nadeln niedersächsischer Fichtenbestände und seine Beurteiligung. Allg. Forst Jagdztg 157:196–200.Google Scholar
  22. Stefan K (1989) Schwefel- und Nährstoffgehalte in Pflanzenproben des österreichischen Bioindikatornetzes. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline. Eidgenössische Anstalt für das forstliche Versuchswesen (EAFV) Birmensdorf, Switzerland, pp 99–104.Google Scholar
  23. Stienen H, Bauch J (1988) Element content in tissues of spruce seedlings from hydroponic cultures simulating acidification and deacidification. Plant Soil 106:231–238.CrossRefGoogle Scholar
  24. Stuanes AO, Abrahamsen G, Tveite B (1988) Effect of artificial rain on soil chemical properties and forest growth. In: Mathy P (ed) Air pollution and ecosystems. D. Reidel, Dordrecht, pp 248–253.Google Scholar
  25. Swan HSD (1972) Foliar nutrient concentrations in lodgepole pine as indicators of tree nutrient status and fertilizer requirement. (Woodlands Rep. 43) Pulp Paper Research Institute of Canada, Pointe Claire, Quebec.Google Scholar
  26. Tamm CO, Popovic B (1989) Acidification experiments in pine forests. (Report 3589) National Swedish Environmental Protection Board, Solna, Sweden.Google Scholar
  27. Tveite B (1980) Effects of acid precipitation on soil and forest. 8. Foliar nutrient concentrations in field experiments. In: Drabløs D, Tollan A (eds) Ecological impact of acid precipitation. Proceedings of an international conference. (SNSF Project) Oslo-Ås, pp 204–205.Google Scholar
  28. Tveite B, Abrahamsen G (1980) Effects of artificial acid rain on the growth and nutrient status of trees. In: Hutchinson TC, Havas M (eds) Effects of acid precipitation on terrestrial ecosystems. Plenum Press, New York, pp 305–318.Google Scholar
  29. Tveite B, Abrahamsen G, Stuanes AO (1990/91) Liming and wet acid deposition effects on tree growth and nutrition: experimental results. Water Air Soil Pollut 54:409–422.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Bjørn Tveite
    • 1
  • Gunnar Abrahamsen
    • 2
  • Magne Huse
    • 3
  1. 1.Norwegian Forest Research InstituteÅsNorway
  2. 2.Department of Soil and Water SciencesAgricultural University of NorwayÅsNorway
  3. 3.Norwegian Forest Research InstituteÅsNorway

Personalised recommendations