Advertisement

Germination and Seedling Development

  • Toril Drabløs Eldhuset
  • Olav Teigen
  • Kristian Bjor
Part of the Ecological Studies book series (ECOLSTUD, volume 104)

Abstract

Parallel to the long-term studies, greenhouse experiments were done to elucidate the connection between soil acidification and germination/ seedling development of the most common Norwegian forest tree species. Preliminary results that showed that the aluminum concentration increased in seedlings when soil pH decreased (Teigen, unpublished), initiated greenhouse and growth chamber experiments on the effects of Al on seedling growth.

Keywords

Picea Abies Seedling Development Simulated Acid Rain Forestry Commission Acid Forest Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouguendia ZM, Redmann RE (1979) Germination and early seedling growth of four conifers on acidic and alkaline substrates. For Sci 25:358–360.Google Scholar
  2. Abrahamsen G (1983) Sulphur pollution: Ca, Mg, and Al in soil and soil water, and possible effects on forest trees. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems, Reidel Publishing Company, Dordrecht, pp 207–218.Google Scholar
  3. Abrahamsen G (1984) Effects of acidic deposition on forest soil and vegetation. Phil Trans R Soc Lond (B)305:369–382.CrossRefGoogle Scholar
  4. Arovaara H, Ilvesniemi H (1990) Effects of soluble inorganic aluminium on the growth and nutrient concentrations of Pinus sylvestris and Picea abies seedlings. Scand J For Res 5:49–57.CrossRefGoogle Scholar
  5. Benzian B (1965) Experiments on nutrition problems in forest nurseries, vol I. (Forestry Commission Bulletin No. 37) Forestry Commission, London.Google Scholar
  6. Bergkvist B (1987) Leaching of metals from forest soils as influenced by tree species and management. For Ecol Manage 22:29–56.CrossRefGoogle Scholar
  7. Beyer LE, Hutnik RJ (1969) Acid and aluminum toxicity as related to strip-mine spoil banks in western Pennsylvania. Penn State Univ Res Briefs 3:69–72.Google Scholar
  8. Cronan CS (1991) Differential absorption of Al, Ca, and Mg by roots of red spruce (Picea rubens Sarg.). Tree Physiol 8:227–237.PubMedGoogle Scholar
  9. Godbold DL, Fritz E, Hüttermann A (1988) Aluminium toxicity and forest decline. Proc Natl Acad Sci USA 85:3888–3892.PubMedCrossRefGoogle Scholar
  10. Göransson A, Eldhuset TD (1987) Effects of aluminium on growth and nutrient uptake of Betula pendula seedlings. Physiol Plant 69:193–199.CrossRefGoogle Scholar
  11. Göransson A, Eldhuset TD (1991) Effects of aluminium on growth and nutrient uptake of small Picea abies and Pinus sylvestris plants. Trees 5:136–142.CrossRefGoogle Scholar
  12. Hecht-Buchholz C, Jorns CA, Keil P (1987) Effect of excess aluminium and manganese on Norway spruce seedlings as related to magnesium nutrition. J Plant Nutr 10:1103–1110.CrossRefGoogle Scholar
  13. Henriksen TM, Eldhuset TD, Stuanes AO, Langerud BR (1992) Effects of aluminium and calcium on Norway spruce. [Picea abies (L.) Karst.] seedlings. Scand J For Res 7:63–70.CrossRefGoogle Scholar
  14. Hildebrand EE (1990) The spatial heterogeneity of chemical properties in acid forest soils and its importance for tree nutrition. Water Air Soil Pollut 54: 183–191.CrossRefGoogle Scholar
  15. Hoyle MC (1971) Effects of the chemical environment on yellow birch root development and top growth. Plant Soil 35:623–633.CrossRefGoogle Scholar
  16. Lee JJ, Weber DE (1979) The effect of simulated acid rain on seedling emergence and growth of eleven woody species. For Sci 25:393–398.Google Scholar
  17. McCormick LH, Steiner KC (1978) Variation in aluminium tolerance among six genera of trees. For Sci 24:565–568.Google Scholar
  18. Nilsson SI, Lundmark J-E (1986) Exchangeable aluminium as a basis for lime requirement determinations in acid forest soils. Acta Agric Scand 36:173–185.CrossRefGoogle Scholar
  19. Nosko P, Brassard P, Kramer JR, Kershaw KA (1988) The effect of aluminium on seed germination and early seedling establishment, growth, and respiration of white spruce (Picea glauca). Can J Bot 66:2305–2310.Google Scholar
  20. Raynal DJ, Roman JR, Eichenlaub WM (1982) Response of tree seedlings to acid precipitation. I. Effect of substrate acidity on seed germination. Environ Expl Bot 22:377–383.CrossRefGoogle Scholar
  21. Rost-Siebert K (1983) Aluminium-Toxizität und -Toleranz an Keimpflanzen von Fichte (Picea abies Karst.) und Buche (Fagus silvatica L.). Allg Forstz 38: 686–689.Google Scholar
  22. Schaedle M, Thornton FC, Raynal DJ, Tepper HB (1989) Response of tree seedlings to aluminum. Tree Physiol 5:337–356.PubMedGoogle Scholar
  23. Scherbatskoy T, Klein RM, Badger GJ (1987) Germination responses of forest tree seed to acidity and metal ions. Environ Expl Bot 27:157–164.CrossRefGoogle Scholar
  24. Schier GA (1987) Germination and early growth of four pine species on soil treated with simulated acid rain. Can J For Res 17:1190–1196.CrossRefGoogle Scholar
  25. Schroder WH, Bauch J, Endeward R (1988) Microbeam analysis of Ca exchange and uptake in the fine roots of spruce: influence of pH and aluminum. Trees 2:96–103.CrossRefGoogle Scholar
  26. Siegel N, Haug A (1983) Calmodulin-dependent formation of membrane potential in barley root plasma membrane vesicles: a biochemical model of aluminum toxicity in plants. Physiol Plant 59:285–291.CrossRefGoogle Scholar
  27. Smith WH, Pooley AS (1989) Red spruce rhizosphere dynamics: spatial distribution of aluminum and zinc in the near-root soil zone. For Sci 35: 1114–1124.Google Scholar
  28. Stam AC, McLaughlin SB, McCormick JF (1990) Effects of acidic precipitation on the soil chemistry and bioavailability of aluminum, manganese, and copper. (Environmental Sciences Division Publ No. 3507) Oak Ridge National Laboratory, Oak Ridge.Google Scholar
  29. Suhayda CG, Haug A (1986) Organic acids reduce Al toxicity in maize root membranes. Physiol Plant 68:189–195.CrossRefGoogle Scholar
  30. Teigen O (1975) Spire og etableringsforsøk med gran og furu i kunstig forsuret mineraljord. Sur nedbørs virkning på skog og fisk. (SNSF Project IR 10/75) Oslo-Ås.Google Scholar
  31. Tischner R, Kaiser U, Hüttermann A (1983) Untersuchungen zum Einfluss von Aluminium-Ionen auf das Wachstum von Fichtenkeimlingen in Abhängigkeit vom pH-Wert. Forstw Centralbl 102:329–336.CrossRefGoogle Scholar
  32. Ulrich B (1980) Die Wälder in Mitteleuropa: Messergebnisse ihrer Umweltbelastung, Theorie ihrer Gefährdung, Prognose ihrer Entwicklung. Allg Forstz 35:1198–1202.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Toril Drabløs Eldhuset
    • 1
  • Olav Teigen
    • 2
  • Kristian Bjor
    • 3
  1. 1.Norwegian Forest Research InstituteÅsNorway
  2. 2.Vestfold Agricultural SchoolMelsomvikNorway
  3. 3.Norwegian Forest Research InstituteÅsNorway

Personalised recommendations