Skip to main content

Calcium Channels, the Pancreatic Islet, and Endocrine Secretion

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

Abstract

Insulin release from the pancreatic islet is stimulated and/or modulated by a variety of metabolic and hormonal factors, paramount among them the concentration of plasma glucose. As is the case for other endocrine and exocrine secretions, Ca2+ appears to be a major mediator of these secretory stimuli. Grodsky and Bennett1 and Milner and Hales2 were the first to show that insulin secretion was markedly impaired in the absence of calcium, an observation later confirmed by other investigators.3,4 Subsequent studies demonstrated that glucose itself increases the concentration of calcium in the cytosol of the ß cell, both by stimulating calcium uptake and by inhibiting calcium efflux through the cell membrane.5–10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grodsky GM, Bennett LL. Cation requirement for insulin secretion in isolated perfused pancreas. Diabetes 1966; 15:910–913.

    PubMed  CAS  Google Scholar 

  2. Milner RDG, Hales CN. The role of calcium and magnesium in insulin secretion from rabbit pancreas studied in vitro. Diabetologia 1967; 3:47–49.

    Article  PubMed  CAS  Google Scholar 

  3. Milner RDG, Hales CN. Cations and the secretion of insulin. Biochim Biophys Acta 1968; 150:165–167.

    Article  PubMed  CAS  Google Scholar 

  4. Wollheim CB, Sharp GWG. Regulation of insulin release by calcium. Physiol Rev 1981; 61:914–972.

    PubMed  CAS  Google Scholar 

  5. Malaisse-Lagae F, Malaisse WL. Stimulus-secretion coupling of glucose-induced insulin release. III. Uptake of 45calcium by isolated islets of Langerhans. Endocrinology 1971; 88:72–80.

    Article  PubMed  CAS  Google Scholar 

  6. Malaisse WL, Malaisse-Lagae F, Brisson JR. The stimulus-secretion coupling of glucose-induced insulin release. II. Interactions of alkai and alkaline earth cations. Horm Metab Res 1971; 3:65–70.

    Article  PubMed  CAS  Google Scholar 

  7. Malaisse WJ, Brisson GR, Baird LE. Stimulus-secretion coupling of glucose-induced insulin release. X. Effect of glucose on 45Ca efflux from perifused islets. Am J Physiol 1973; 224:389–394.

    PubMed  CAS  Google Scholar 

  8. Malaisse WJ. Insulin secretion: Multifactorial regulation for a single process of release. Diabetologia 1973; 9:167–173.

    Article  PubMed  CAS  Google Scholar 

  9. Hellman B, Sehlin J, Taljedal IB. Calcium uptake by pancreatic B-cells as measured with the aid of 45Ca and mannitol-4H. Am J Physiol 1971; 221:1795–1801.

    PubMed  CAS  Google Scholar 

  10. Kikuchi M, Wollheim CB, Cuendet GS, Renold AE, Sharp GWG. Studies on the dual effect of glucose on 45Ca2+ efflux from isolated rat islets. Endocrinology 1978; 102:1339–1349.

    Article  PubMed  CAS  Google Scholar 

  11. Matthews EK, Dean PM, Sakamoto Y. The bioelectrical activity of the islet cell membrane. In: Hasselblatt A, Bruchhausen FV, eds. Handbook of Experimental Pharmacology. XXXII/2. Insulin. New York: Springer-Verlag; 1975:157–173.

    Google Scholar 

  12. Sherman A, Rinzel J, Keizer J. Emergence of organized bursting in clusters of pancreatic B-cells by channel sharing. Biophysic J 1988; 54:411–425.

    Article  CAS  Google Scholar 

  13. Chay TR, Kang HS. Role of single-channel stoichastic noise on bursting clusters of pancreatic B-cells. Biophysic J 1988; 54:427–435.

    Article  CAS  Google Scholar 

  14. Rajan AS, Aguilar-Bryan L, Nelson DA, Yaney GC, Hsu WH, Konze DL, Boyd AE. Ion channels and insulin secretion. Diabetes Care 1990; 13:340–363.

    Article  PubMed  CAS  Google Scholar 

  15. Hedeskov CJ. Mechanism of glucose-induced insulin secretion. Physiol Rev 1990; 60:442–509.

    Google Scholar 

  16. Dean PM, Matthews EK. Glucose-induced electrical activity in pancreatic islet cells. J Physiol 1970; 210:255–264.

    PubMed  CAS  Google Scholar 

  17. De Weille J, Schmid-Antomarchi H, Fosset M, Lazdunski M. ATP-sensitive K channels that are blocked by hypoglycemia inducing sulfonylureas in insulin secreting cells are activated by galanin 4 hyperglycemia inducing hormone. Proc Natl Acad Sei USA 1988; 85:1313–1316.

    Article  Google Scholar 

  18. Cook DL, Hales CH. Intracellular ATP directly blocks K+ channels in pancreatic B cells. Nature 1984; 311:271–273.

    Article  PubMed  CAS  Google Scholar 

  19. Cook DL, Ikeuchi M, Fijimoto WY. Lowering of pH inhibits Ca++-activated K+ channels in pancreatic B cells. Nature 1984; 311:269–271.

    Article  PubMed  CAS  Google Scholar 

  20. Findlay I, Dunne MJ, Petersen OH. High conductance K+ channels in pancreatic islet cells can be activated and inactivated by internal calcium. J Membr Biol 1985; 83:169–175.

    Article  PubMed  CAS  Google Scholar 

  21. Hiriart M, Matteson DR. Na channels and two types of calcium channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J Gen Physiol 1988; 91:617–639.

    Article  PubMed  CAS  Google Scholar 

  22. Aschroft FM, Kelly RP, Smith PA. Two types of Ca channels in rat pancreatic B cells. Eur J Physiol 1990; 415:504–506.

    Article  Google Scholar 

  23. Findlay I, Aschroft FM, Kelly RP, Rorsman P, Petersen OH, Trübe G. Calcium currents in insulin-secreting B-cells. Ann NY Acad Sei 1989; 560:403–409.

    Article  CAS  Google Scholar 

  24. Satin LS, Cook DL. Voltage gated calcium current in pancreatic B cells. Pfluegers Arch 1985; 404:385–387.

    Article  CAS  Google Scholar 

  25. Satin LS, Cook DL. Evidence for two calcium currents in insulin-secreting cells. Pfluegers Arch 1988; 411:401–409.

    Article  CAS  Google Scholar 

  26. Plant TD. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol 1988; 404:731–747.

    PubMed  CAS  Google Scholar 

  27. Rorsman P, Ashcroft FM, Trübe G. Single Ca channel currents in mouse pancreatic B-cells. Eur J Physiol 1988; 412:597–603.

    Article  CAS  Google Scholar 

  28. Ashcroft FM, Rorsman P, Trübe G. Single calcium channel activity in mouse pancreatic B-cells. Ann NY Acad Sei 1989; 560:410–412.

    Article  CAS  Google Scholar 

  29. Keahey HH, Rajan AS, Boyd AE III, Kunze DL. Characterization of voltage-dependent Ca2+ channels in B-cell line. Diabetes 1989; 38:188–193.

    Article  PubMed  CAS  Google Scholar 

  30. Keahey HH, Boyd AE III, Kunze DL. Catecholamine modulation of calcium currents in clonal pancreatic B-cells. Am J Physiol 1989; 257:C1171–C1176.

    PubMed  CAS  Google Scholar 

  31. Ashcroft FM, Harrison DE, Ashcroft SJH. Glucose induces closure of single potassium channels in isolated rat pancreatic B-cells. Nature 1984; 312:446–448.

    Article  PubMed  CAS  Google Scholar 

  32. Misler S, Falke LC, Gillis K, McDaniel ML. Metabolite regulated potassium channels in rat pancreatic B-cells. Proc Natl Acad Sei USA 1986; 83:7119–7123.

    Article  CAS  Google Scholar 

  33. Grynkiewicz G, Poenic M, Tsien RY. A new generation of calcium indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260:3440–3450.

    PubMed  CAS  Google Scholar 

  34. Tsien RY, Pozzan T, Rink RY. Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitoring with a new intracellular trapped fluorescent indicator. J Cell Biol 1982; 94:325–334.

    Article  PubMed  CAS  Google Scholar 

  35. Ribes G, Siegel EG, Wollheim CB, Renold AE, Sharp GWG. Rapid changes in calcium content of rat pancreatic islets in response to glucose. Diabetes 1981; 30:52–55.

    Article  PubMed  CAS  Google Scholar 

  36. Naber SP, McDaniel ML, Lacy PE. The effect of glucose on the acute uptake and efflux of calcium-45 in isolated rat islets. Endocrinology 1977; 101:686–693.

    Article  PubMed  CAS  Google Scholar 

  37. Smith PA, Rorsman P, Ashcroft FM. Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic B-cells. Nature 1989; 342:550–553.

    Article  PubMed  CAS  Google Scholar 

  38. Triggle DJ, Janis RA. Calcium channel ligands. Ann Rev Pharmacol Toxicol 1987; 27:347–369.

    Article  CAS  Google Scholar 

  39. Hill RS, Oberwetter JM, Boyd AE III. Increase in cAMP levels in B-cell line potentiates insulin secretion without altering cytosolic free-calcium concentration. Diabetes 1987; 36:440–446.

    Article  PubMed  CAS  Google Scholar 

  40. Rajan AS, Hill RS, Boyd AE III. Effect of rise in cAMP levels on Ca++ influx through voltage-dependent Ca++ channels in HIT cells. Second-messenger synarchy in beta cells. Diabetes 1989; 38:874–880.

    CAS  Google Scholar 

  41. Zawalich WS. Modulation of insulin secretion from B-cells by phosphoinositol-derived second-messenger molecules. Diabetes 1988; 37:137–141.

    Article  PubMed  CAS  Google Scholar 

  42. Hsu WH, Xiang H, Rajan AS, Kunze DL, Boyd AE. Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the beta cell. J Biol Chem 1991; 266:837–843.

    PubMed  CAS  Google Scholar 

  43. Di Virgilio F, Pozzan T, Wolheim CB, Vicentini LM, Meldolesi J. Tumor promoter phorbol myristate acetate inhibits Ca++ influx through voltage-dependent calcium channels in two secretory cell lines, PC12 and RINm5F. J Biol Chem 1986; 261:32–35.

    PubMed  Google Scholar 

  44. Yada T, Russo LL, Sharp GWG. Phorbol ester-stimulated insulin secretion by RINm5f insulinoma cells is linked with membrane depolarization and an increase in cytosolic free Ca++ concentration. J Biol Chem 1989; 264:2455–2462.

    PubMed  CAS  Google Scholar 

  45. Sharp GWG, LeMarchand-Brustel Y, Yada T, et al. Galanin can inhibit insulin release by a mechanism other than membrane hyperpolarization or inhibition of adenylate cyclase. J Biol Chem 1989; 264:7302–7309.

    PubMed  CAS  Google Scholar 

  46. Dunne MJ, Bullet MJ, Li G, Wolheim CB, Petersen OH. Galanin activates nucleotide-dependent K channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 1989; 8:413–420.

    PubMed  CAS  Google Scholar 

  47. Nilsson T, Arkhammer P, Rorsman P, Berggren P-O. Suppression of insulin release by galanin and somatostatin is mediated by a G protein: An effect involving repolarization and reduction in cytoplasmic free Ca++ concentration. J Biol Chem 1989; 264:973–980.

    PubMed  CAS  Google Scholar 

  48. Dunbar JC, Houser F, Levy J. Beta cell desensitization to glucose induced by hyperglycemia is augmented by increased calcium. Diab Res Clin Pract 1989; 7:187–196.

    Article  CAS  Google Scholar 

  49. Hoenig M, Culberson LH, Furguson DC. Calcium transport by plasma membranes from a glucose-responsive rat insulinoma. Endocrinology 1991; 128:1381–1384.

    Article  PubMed  CAS  Google Scholar 

  50. Bolaffi JL, Rodd GG, Ma YH, Bright D, Grodsky GM. The role of Ca2+-related events in glucose-stimulated desensitization of insulin secretion. Endocrinology 1991; 129:2131–2138.

    Article  PubMed  CAS  Google Scholar 

  51. Leahy JL, Bonner-Weir S, Weir GC. B-cell dysfunction induced by chronic hyperglycemia. Diabetes Care 1992; 15:442–455.

    Article  PubMed  CAS  Google Scholar 

  52. Rorsman P. Two types of Ca++ currents with different sensitivities to organic Ca++ channel antagonists in guinea pig pancreatic a2 cells. J Gen Physiol 1988; 91:243–254.

    Article  PubMed  CAS  Google Scholar 

  53. Rorsman P, Hellman B. Voltage-activated currents in guinea big pancreatic a2 cells: Evidence for Ca++-dependent action potentials. J Gen Physiol 1988; 91:223–242.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dunbar, J.C. (1994). Calcium Channels, the Pancreatic Islet, and Endocrine Secretion. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics