Skip to main content

Cyclic Nucleotide-Activated Channels

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 111 Accesses

Abstract

Sensory transduction in both the visual and the olfactory system involves ion channels that are opened directly by cyclic nucleotides. Both the absorption of light and the binding of many, but not all, odorants trigger a chain of enzymatic events that culminate in a change in the concentration of a cyclic nucleotide, a decrease in the concentration of cyclic GMP (cGMP) in the visual system, and an increase in the concentration of cyclic AMP (cAMP) in the olfactory system. Alterations in intracellular levels of cyclic nucleotides in these systems affect the activity of cyclic nucleotide-activated channels located in the plasma membrane. In the visual system closing of these channels leads to hyperpolarization of the cell, whereas in the olfactory system opening of cyclic nucleotide-activated channels results in depolarization. These cyclic nucleotide-induced alterations in the membrane potential represent the first step in neural excitation. Since cyclic nucleotide-activated channels mediate the final steps of the visual and olfactory transduction cascades and initiate the flow of ions that triggers excitation of the cell, they represent the molecular switches that control sensory perception. These observations and recent discoveries of additional members of the cyclic nucleotide-activated channel family in cardiac pacemaker cells1 and cells of the pineal gland2 have focused considerable attention on this expanding new family of ion channels that are directly activated by second messengers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 1991; 351:145–147.

    PubMed  CAS  Google Scholar 

  2. Dryer SE, Henderson D. A cyclic GMP-activated channel in dissociated cells of the chick pineal gland. Nature 1991; 353:756–758.

    PubMed  CAS  Google Scholar 

  3. Fesenko EE, Kolesnikov SS, Lyubarski AL. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 1985; 313:310–313.

    PubMed  CAS  Google Scholar 

  4. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci 1986; 9:87–119.

    PubMed  CAS  Google Scholar 

  5. Pugh EN, Lamb TD. Cyclic GMP and calcium: The internal messengers of excitation and adaptation in vertebrate photoreceptors. Vision Res 1990; 30(12):1923–1948.

    PubMed  CAS  Google Scholar 

  6. O’Dowd BF, Lefkowitz RJ, Caron MG. Structure of the adrenergic and related receptors. Ann Rev Neurosci 1989; 12:67–83.

    PubMed  Google Scholar 

  7. Honig B, Ebrey T, Callender RH, Dinur U, Ottolenghi M. Photoisomerization, energy storage, and charge separation: A model for light energy transduction in visual pigments and bacteriorhodopsin. Proc Natl Acad Sei USA 1979; 76:2503–2507.

    CAS  Google Scholar 

  8. Fung BKK, Stryer L. Photolyzed rhodopsin catalyzes the exchange of GTP for GDP in retinal rod outer segment membranes. Proc Natl Acad Sei USA 1980; 77:2500–2504.

    CAS  Google Scholar 

  9. Kühn H. Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature 1980; 283:587–589.

    PubMed  Google Scholar 

  10. Stryer L, Hurley JB, Fung BK-K. First stage of amplification in the cyclic nucleotide cascade of vision. Curr Top Membr Transp 1981; 15:93–108.

    CAS  Google Scholar 

  11. Fung BKK, Hurley JB, Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sei USA 1981; 78:152–156.

    CAS  Google Scholar 

  12. Yee R, Liebman RA. Light-activated phosphodiesterase of the rod outer segment: Kinetics and parameters of activation and deactivation. J Biol Chem 1978; 253:8902–8909.

    PubMed  CAS  Google Scholar 

  13. Baehr W, Devlin MJ, Applebury ML. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem 1979; 254:11669–11677.

    PubMed  CAS  Google Scholar 

  14. Cote RH, Biernbaum MS, Nicol GD, Bownds MD. Light-induced decreases in cGMP concentration precede changes in membrane permeability in frog rod photoreceptors. J Biol Chem 1984; 259:9635–9641.

    PubMed  CAS  Google Scholar 

  15. Blazynski C, Cohen AI. Rapid decline in cyclic GMP of rod outer segments of intact frog photoreceptors after illumination. J Biol Chem 1986; 261:14142–14147.

    PubMed  CAS  Google Scholar 

  16. Kühn H, Dreyer WJ. Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett 1972; 20:1.

    PubMed  Google Scholar 

  17. Kühn H, Hall SW, Wilden U. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 1984; 176:473–478.

    PubMed  Google Scholar 

  18. Wheeler GL, Matuo Y, Bitensky MW. Light-activated GTPase in vertebrate photoreceptors. Nature 1977; 269:822–823.

    PubMed  CAS  Google Scholar 

  19. Vuong TM, Chabre M. Subsecond deactivation of transducin by endogenous GTP hydrolysis. Nature 1990; 346:71–74.

    PubMed  CAS  Google Scholar 

  20. Deterre P, Bigay J, Forquet F, Robert M, Chabre M. cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc Natl Acad Sei USA 1988; 95:2424–2428.

    Google Scholar 

  21. Lolley RN, Racz E. Calcium modulation of cyclic GMP synthesis in rat visual cells. Visual Res 1982; 22:1481–1486.

    CAS  Google Scholar 

  22. Pepe IM, Panfoli I, Cugnoli C. Guanylate cyclase in rod outer segments of the toad retina. FEBS Lett 1986; 203:73–76.

    PubMed  CAS  Google Scholar 

  23. Koch KW, Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature (London) 1988; 334:64–66.

    CAS  Google Scholar 

  24. Capo villa M, Caretta A, Cervetto L, Torre V. Ionic movements through light-sensitive channels of toad rods. J Physiol 1983; 343:295–310.

    CAS  Google Scholar 

  25. Hodgkin AL, McNaughton PA, Nunn BJ. The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. J Physiol 1985; 358:447–468.

    PubMed  CAS  Google Scholar 

  26. Nakatani K, Yau KW. Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment. J Physiol 1988; 395:695–729.

    PubMed  CAS  Google Scholar 

  27. Menini A, Rispoli G, Torre V. The ionic selectivity of the light-sensitive current in isolated rods of the tiger salamander. J Physiol 1988; 402:279–300.

    PubMed  CAS  Google Scholar 

  28. Yau KW, Nakatani K. Cation selectivity of light-sensitive conductance in retinal rods. Nature 1984a; 309:352–354.

    PubMed  CAS  Google Scholar 

  29. Hodgkin AL, McNaughton PA, Nunn BJ. Measurement of sodium-calcium exchange in salamander rods. J Physiol 1987; 391:347–370.

    PubMed  CAS  Google Scholar 

  30. Lagnado L, Cervetto L, McNaughton PA. Ion transport by the Na-Ca exchange in isolated rod outer segments. Proc Natl Acad Sei USA 1988; 85:4548–4552.

    CAS  Google Scholar 

  31. Cervetto L, Lagnado L, Perry RJ, Robinson DW, McNaughton PA. Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature 1989; 337:740–743.

    PubMed  CAS  Google Scholar 

  32. Ratto GM, Payne R, Owen WG, Tsien RY. The concentration of cytosolic free calcium in vertebrate outer segments measured with fura-2. J Neurosci 1988; 8:3240–3246.

    PubMed  CAS  Google Scholar 

  33. Lambrecht HG, Koch KW. A 26 kD calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J 1991; 10:793–798.

    PubMed  CAS  Google Scholar 

  34. Frings S, Lindemann B. Single unit recording from olfactory cilia. Biophys J 1990; 57:1091–1094.

    PubMed  CAS  Google Scholar 

  35. Firestein S, Shepherd GM, Werbln FS. Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurons. J Physiol 1990; 430:135–158.

    PubMed  CAS  Google Scholar 

  36. Kurahashi T. The response induced by intracellular cyclic AMP in isolated olfactory receptor cells of the newt. J Physiol 1990; 430:355–371.

    PubMed  CAS  Google Scholar 

  37. Lowe G, Gold GN. The spatial distribution of odorant sensitivity and odorant-induced currents in salamander olfactory receptor cells. J Physiol 1991; 442:147–168.

    PubMed  CAS  Google Scholar 

  38. Duchamp A, Revial MF, Holley A, MacLeod P. Odor discrimination by frog olfactory receptors. Chem Senses Flavour 1974; 1:213–233.

    CAS  Google Scholar 

  39. Sicard G, Holley A. Receptor cell responses to odorants: Similarities and differences among odorants. Brain Res 1984; 292:283–296.

    PubMed  CAS  Google Scholar 

  40. Buck L, Axel R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991; 65:175–187.

    PubMed  CAS  Google Scholar 

  41. Pace U, Hanski E, Salomon Y, Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 1985; 316:255–258.

    PubMed  CAS  Google Scholar 

  42. Sklar PB, Anholt RRH, Snyder SH. The odorant-sensitive adenylate cyclase of olfactory receptor cells: Differential stimulation by distinct classes of odorants. J Biol Chem 1986; 261:15538–15543.

    PubMed  CAS  Google Scholar 

  43. Shirley SG, Robinson CJ, Dickison K, Aujla R, Dodd GH. Olfactory adenylate cyclase of the rat: Stimulation by odorants and inhibition by Ca2+. Biochem J 1986; 240:605–607.

    PubMed  CAS  Google Scholar 

  44. Breer H, Boekhoff I, Tareilus E. Rapid kinetics of second messenger formation in olfactory transduction. Nature 1990; 345:65–68.

    PubMed  CAS  Google Scholar 

  45. Boekhoff I, Tareilus E, Strottman J, Breer H. Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J 1990; 9:2453–2458.

    PubMed  CAS  Google Scholar 

  46. Bakalyar HA, Reed RR. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 1990; 250:1403–1406.

    PubMed  CAS  Google Scholar 

  47. Pace U, Lancet D. Olfactory GTP-binding protein: Signal transducing polypeptide of vertebrate chemosensory neurons. Proc Natl Acad Sei USA 1986; 83:4947–4951.

    CAS  Google Scholar 

  48. Anholt RRH, Mumby SM, Stoffers DA, Girard PR, Kuo JF, Snyder SH. Transduction proteins of olfactory receptor cells: Identification of guanine nucleotide binding proteins and protein kinase C. Biochemistry 1987; 26:788–795.

    PubMed  CAS  Google Scholar 

  49. Jones DT, Reed RR. Golf: An olfactory neuron specific G-protein involved in odorant signal transduction. Science 1989; 244:790–795.

    PubMed  CAS  Google Scholar 

  50. Anholt RRH. Primary events in olfactory reception. Trends Biochem Sei 1987; 12:58–62.

    CAS  Google Scholar 

  51. Breer H, Boekhoff I. Odorants of the same odor class activate different second messenger pathways. Chemical Senses 1991; 16:19–29.

    CAS  Google Scholar 

  52. Restrepo D, Miyamoto T, Bryant BP, Teeter JH. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science 1990; 249:1166–1168.

    PubMed  CAS  Google Scholar 

  53. Anholt RRH, Rivers AM. Olfactory transduction: Crosstalk between second messenger systems. Biochemistry 1990; 29:4049–4054.

    PubMed  CAS  Google Scholar 

  54. Kurahashi T. Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J Physiol 1989; 419:177–192.

    PubMed  CAS  Google Scholar 

  55. Kurahashi T, Shibuya T. Ca2+-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res 1990; 515:261–268.

    PubMed  CAS  Google Scholar 

  56. Heldman J, Lancet D. Cyclic AMP-dependent protein phosphorylation in chemosensory neurons: Identification of cyclic nucleotide-regulated phosphoproteins in olfactory cilia. J Neurochem 1986; 47:1527–1533.

    PubMed  CAS  Google Scholar 

  57. Nakamura T, Gold GH. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 1987; 325:442–444.

    PubMed  CAS  Google Scholar 

  58. Kolesnikov SS, Zhainazarov AB, Kosolapov AV. Cyclic nucleotide-activated channels in the frog olfactory receptor plasma membrane. FEBS Lett 1990; 266:96–98.

    PubMed  CAS  Google Scholar 

  59. Dhallan RS, Yau KW, Schräder KA, Reed RR. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 1990; 347:184–187.

    PubMed  CAS  Google Scholar 

  60. Frings S, Lindemann B. Current recording from sensory cilia of olfactory receptor cells in situ. I. The neural response to cyclic nucleotides. J Gen Physiol 1991; 97:1–16.

    CAS  Google Scholar 

  61. Firestein S, Darrow B, Shepherd GM. Activation of the sensory current in salamander olfactory receptor neurons depends on a G protein-mediated cAMP second messenger system. Neuron 1991; 6:825–835.

    PubMed  CAS  Google Scholar 

  62. Ludwig J, Margalit T, Eismann E, Lancet D, Kaupp UB. Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett 1990; 270:24–29.

    PubMed  CAS  Google Scholar 

  63. Goulding EH, Ngai J, Kramer RH, Colicos S, Axel R, Siegelbaum SA, Chess A. Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons. Neuron 1992; 8:45–58.

    PubMed  CAS  Google Scholar 

  64. Kaupp UB, Niidome T, Tanabe T, Terada S, Boenigk W, Stuehmer W, Cook NJ, Kangawa K, Matsuo H, Hirose T, Miyata T, Numa S. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 1989; 342:762–766.

    PubMed  CAS  Google Scholar 

  65. Yau KW, Baylor DA. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci 1989; 12:289–327.

    PubMed  CAS  Google Scholar 

  66. McNaughton PA. Light response of vertebrate photoreceptors. Physiol Rev 1990; 70:847–883.

    PubMed  CAS  Google Scholar 

  67. Karpen JW, Zimmerman AL, Stryer L, Baylor DA. Molecular mechanics of the cGMP-activated channel of retinal rods. Cold Spring Harbor Symp Ouant Biol 1988a; 53:325–332.

    CAS  Google Scholar 

  68. Zufall F, Firestein S, Shepherd GM. Analysis of single cyclic nucleotide-gated channels in olfactory receptor cells. J Neurosci 1991; 11:3573–3580.

    PubMed  CAS  Google Scholar 

  69. Haynes LW, Kay AR, Yau KW. Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 1986; 321:66–70.

    PubMed  CAS  Google Scholar 

  70. Zimmerman AL, Baylor DA. Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 1986; 321:70–72.

    PubMed  CAS  Google Scholar 

  71. Lühring H, Hanke W, Simmoteit R, Kaupp UB. Cation selectivity of the cGMP-gated channel of mammalian rod photoreceptors. In: Borsellino A, Cervetto L, Torre V, eds. Sensory Transduction. New York: Plenum Press; 1990:169–174.

    Google Scholar 

  72. Colamartino G, Menini A, Torre V. Blockage and permeation of divalent cations through the cyclic GMP-activated channel from tiger salamander retinal rods. J Physiol 1991; 440:189–206.

    PubMed  CAS  Google Scholar 

  73. Tanaka JC, Eccleston JF, Furman RE. Photoreceptor channel activation by nucleotide derivatives. Biochemistry 1989; 28:2776–2784.

    PubMed  CAS  Google Scholar 

  74. Suzuki N. Single cyclic nucleotide-activated ion channel activity in olfactory receptor cell soma membrane. Neurosci Res Suppl 1990; 12:S113–S126.

    PubMed  CAS  Google Scholar 

  75. Kurahashi T, Kaneko A. High density cAMP-gated channels at the ciliary membrane in the olfactory receptor cell. NeuroReport 1991; 2:5–8.

    PubMed  CAS  Google Scholar 

  76. Altenhofen W, Ludwig J, Eismann E, Kraus W, Boenigk W, Kaupp UB. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc Natl Acad Sei USA 1991; 88:9868–9872.

    CAS  Google Scholar 

  77. Cook NJ, Hanke W, Kaupp UB. Identification, purification, and functional reconstitution of the cyclic GMP-dependent channel from rod photoreceptors. Proc Natl Acad Sei USA 1987; 84:585–589.

    CAS  Google Scholar 

  78. Detwiler PB, Conner JD, Bodoia RD. Gigaseal patch clamp recordings from outer segments of intact retinal rods. Nature 1982; 300:59–61.

    PubMed  CAS  Google Scholar 

  79. Bodoia RD, Detwiler PB. Patch-clamp recordings of the light-sensitive dark noise in retinal rods from the lizard and frog. J Physiol (Lond) 1985; 367:183–216.

    CAS  Google Scholar 

  80. Gray P, Attwell D. Kinetics of light-sensitive channels in vertebrate photoreceptors. Proc R Soc Ser B 1985; 223:379–388.

    CAS  Google Scholar 

  81. Torre V, Straforini M, Campani M. A quantitative model of phototransduction and adaptation in amphibian rod photoreceptors. Seminars Neurosci 1992; 4:5–13.

    Google Scholar 

  82. Zufall F, Shepherd G, Firestein S. Inhibition of the olfactory cyclic nucleotide gated ion channel by intracellular calcium. Proc R Soc Lond 1991; 246:225–230.

    CAS  Google Scholar 

  83. Watanabe SI, Matthews G. Regional distribution of cGMP-activated ion channels in the plasma membrane of the rod photoreceptor. J Neurosci 1988; 8:2334–2337.

    PubMed  CAS  Google Scholar 

  84. Karpen JW, Loney DA, Baylor DA. Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness. J Physiol 1992; 448:257–274.

    PubMed  CAS  Google Scholar 

  85. Hodgkin AL, McNaughton PA, Nunn BJ, Yau KW. Effect of ions on retinal rods from Bufo marinus. J Physiol 1984; 350:649–680.

    PubMed  CAS  Google Scholar 

  86. Yau KW, Nakatani K. Electrogenic Na-Ca exchange in retinal rod outer segment. Nature 1984b; 311:661–663.

    PubMed  CAS  Google Scholar 

  87. Cervetto L, Menini A, Rispoli G, Torre V. The modulation of the ionic selectivity of the light-sensitive current in isolated rods of the tiger salamander. J Physiol 1988; 406:181–198.

    PubMed  CAS  Google Scholar 

  88. Furman RE, Tanaka JC. Monovalent selectivity of the cyclic guanosine monophosphate-activated ion channel. J Gen Physiol 1990; 96:57–82.

    PubMed  CAS  Google Scholar 

  89. Menini A. Currents carried by monovalent cations through cyclic GMP-activated channels in excised patches from salamander rods. J Physiol 1990; 424:167–185.

    PubMed  CAS  Google Scholar 

  90. Picco C, Menini A. The permeability to organic cations of the cyclic GMP-activated channel from retinal rods. Biophys J 1991; 59:535a.

    Google Scholar 

  91. Picco C, Menini A. The permeability of the cGMP-activated channel to organic cations in retinal rods of the tiger salamander. J Physiol 1993; 460:741–758.

    PubMed  CAS  Google Scholar 

  92. Suzuki N. Voltage- and cyclic nucleotide-gated currents in isolated olfactory receptor cells. In: Brand JG, Teeter JH, Cagan RH, Kare MR, eds. Chemical Senses: Receptor Events and Transduction in Taste and Olfaction. New York: Marcel Dekker; 1989:469–493.

    Google Scholar 

  93. Karpen JW, Zimmerman AL, Stryer L, Baylor DA. Gating kinetics of the cyclic GMP-activated channel of retinal rods: Flash photolysis and voltage jump studies. Proc Natl Acad Sei USA 1986b; 85:1287–1291.

    Google Scholar 

  94. Zimmerman AL, Baylor DA. Cation interactions within the cyclic GMP-activated channel of retinal rods from the tiger salamander. J Physiol 1992; 449:759–783.

    PubMed  CAS  Google Scholar 

  95. Yau KW, Haynes LW, Nakatani K. Roles of calcium and cyclic GMP in visual transduction. In: Luttgau H, ed. Membrane Control of Cellular Activity. Stuttgart: Gustav Fischer; 1986:343–366.

    Google Scholar 

  96. Zimmerman AL, Baylor DA. Ionic permeation in the cGMP-activated channel of retinal rods. Biophys J 1988; 53:472a.

    Google Scholar 

  97. Molday RS, Molday LL, Dose A, Clark-Lewis I, Illing M, Cook NJ, Eismann E, Kaupp UB. The cGMP-gated channel of the rod photoreceptor cell: Characterization and orientation of the N-terminus, in press.

    Google Scholar 

  98. Wohlfart P, Muller H, Cook NY. Lectin binding and enzymatic deglycosylation of the cGMP-gated channel from bovine rod photo receptors. J Biol Chem 1989; 264:20934–20930.

    PubMed  CAS  Google Scholar 

  99. Kaupp UB. The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci 1991; 14:150–157.

    PubMed  CAS  Google Scholar 

  100. Weber IT, Shabb JB, Corbin JD. Predicted structures of the cGMP binding domains of the cGMP-dependent protein kinase: A key alanine/threonine difference in evolutionary divergence of cAMP and cGMP binding sites. Biochemistry 1989; 28:6122–6127.

    PubMed  CAS  Google Scholar 

  101. Jan LY, Jan YN. A superfamily of ion channels. Nature 1990; 345:672.

    PubMed  CAS  Google Scholar 

  102. Miller C. 1990: Annus mirabilis of potassium channels. Science 1991; 252:1092–1096.

    CAS  Google Scholar 

  103. Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 1990; 250:533–538.

    PubMed  CAS  Google Scholar 

  104. Guy HR, Durell SR, Warmke J, Drysdale R, Ganetzky B. Similarities in amino acid sequences of Drosophila eag and cyclic nucleotide-gated channels. Science 1991; 254:730.

    PubMed  CAS  Google Scholar 

  105. Chen TY, Peng YW, Dhallan RS, Ahamed B, Reed RR, Yau KW. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 1993; 362:764–767.

    PubMed  CAS  Google Scholar 

  106. Frings S, Lynch JW, Lindemann B. Properties of cyclic nucleotide-gated channels mediating olfactory transduction: Activation, selectivity and blockage. J Gen Physiol 1992; 100:1–11.

    Google Scholar 

  107. Dhallan RS, Macke JP, Eddy RL, Shows TB, Reed RR, Yau KW, Nathans J. Human rod photoreceptor cGMP-gated channel: Amino acid sequence, gene structure, and functional expression. J Neurosci 1992; 12:3248–3256.

    PubMed  CAS  Google Scholar 

  108. Heginbotham L, Abramson T, MacKinnon, R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 1992; 258:1152–1155.

    PubMed  CAS  Google Scholar 

  109. Ngai J, Chess A, Dowling MM, Necles N, Macagno ER, Axel R. Coding of olfactory information: Topography of odorant receptor expression in the catfish olfactory epithelium. Cell 1993; 72:667–680.

    PubMed  CAS  Google Scholar 

  110. Ngai J, Dowling MM, Buck L, Axel R, Chess A. The family of odorant receptors in the channel catfish. Cell 1993; 72:657–666.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Menini, A., Anholt, R.R.H. (1994). Cyclic Nucleotide-Activated Channels. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics