Skip to main content

Nonrenal Potassium Homeostasis: Hypokalemia and Potassium Depletion—Role of Skeletal Muscle Potassium-Pump (Na+,K+- ATPase)

  • Chapter
  • 114 Accesses

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

Abstract

Venous plasma-potassium concentration is one of the most frequently determined values in clinical practice. However, although its long-term regulation by the kidney is well known, its potential for modulation within seconds to minutes due to exchange of potassium across skeletal muscle membranes has not hitherto been well recognized. Moreover, venous plasma potassium is not a very accurate indicator of body potassium homeostasis. Accordingly, in certain clinical situations venous plasma-potassium values may be difficult to interpret and even misleading. This may be the reason why the meaning of mild hypokalemia and its dangers are often questioned and the need for potassium supplementation debated. However, recently research on the regulation of skeletal muscle potassium pumps Na+,K+-ATPase (NKA) have shed light on the rapid regulation of plasma potassium. The results of this work may have important clinical implications. Hence it is the purpose of the present chapter to discuss the physiology of potassium homeostasis in relation to clinical experience and the possible basis for a rational approach to disturbances of potassium homeostasis in clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wright FS, Giebish G. Regulation of potassium excretion. In: Seldin DW, Giebish G, eds. The Kidney: Physiology and Pathophysiology. New York: Raven Press; 1985:1223–1249.

    Google Scholar 

  2. DeFronzo RA, Bia M. Extrarenal potassium homeostasis. In: Seldin DW, Giebish G, eds. The Kidney: Physiology and Pathophysiology. New York: Raven Press; 1985:1179–1207.

    Google Scholar 

  3. Kjellmer I. The role of potassium ions in exercise hyperaemia. Medical Experience 1961; 5:56–60.

    CAS  Google Scholar 

  4. Vyskocil F, Hnik P, Rehfeldt H, Vejsada R, Ujec E. The measurement of K+ e concentration changes in human muscle during volitional concentrations. Pfluegers Arch 1983; 399:235–237.

    CAS  Google Scholar 

  5. Saltin B, Blomqvist G, Mitchel JH, Johnson RL, Wildenthal K, Chapman CB. Response to exercise after bed rest and after training. Circulation 1968; 7(suppl):l-78.

    Google Scholar 

  6. Kjeldsen K, Nørgaard A, Hau C. Exercise induced hyperkalemia is in human subjects reduced by moderate training without change in skeletal muscle Na, K-ATPase concentration. Eur J Clin Invest 1990; 20:642–647.

    PubMed  CAS  Google Scholar 

  7. Juel C, Bangsbo J, Graham T, Saltin B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand 1990; 140:147–159.

    PubMed  CAS  Google Scholar 

  8. Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL. Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 1992; 262:R126–R136.

    PubMed  CAS  Google Scholar 

  9. McKechnie JK, Leary WP, Joubert SM. Some electrocardiographic and biochemical changes recorded in marathon runners. South African Medical Journal 1967; 41:722–725.

    PubMed  CAS  Google Scholar 

  10. Band DM, Lim M, Linton RAF, Wolf CB. Changes in arterial plasma potassium concentration during exercise. J Physiol 1982; 328:74P–75P.

    Google Scholar 

  11. Medbø JI, Sejersted OM. Plasma potassium changes with high intensity exercise. J Physiol 1990; 421:105–122.

    PubMed  Google Scholar 

  12. Beaumont van W, Underkofler S, Baumont van S. Erythrocyte volume, plasma volume, and acid-base changes in exercise and heat dehydration. J Applied Physiol 1981; 50:1255–1262.

    Google Scholar 

  13. Brady HR, Kinirons M, Lynch T, Ohman EM, Tormay W, O’Malley KM, Horgan JH. Heart rate and metabolic response to competitive squash in veteran players: Identification of risk factors for sudden cardiac death. Eur Heart J 1989; 10:1029–1035.

    PubMed  CAS  Google Scholar 

  14. Sjøgaard G, Adams RP, Saltin B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol 1985; 248:190R–196R.

    Google Scholar 

  15. Sjøgaard G. Water and electrolyte fluxes during exercise and their relation to muscle fatigue. Acta Physiol Scand 1986; 556(suppl):129–136.

    Google Scholar 

  16. Lindinger MI, Sjøgaard G. Potassium regulation during exercise and recovery. Sports Med 1991; 11:382–401.

    PubMed  CAS  Google Scholar 

  17. Patterson DJ. Potassium and ventilation in exercise. J Applied Physiol 1992; 72:811–820.

    Google Scholar 

  18. Kjeldsen K. Dysfunction of skeletal muscle Na, K-pumps may expose the heart to arrhythmic potassium concentrations during exercise. Can J Sports Med 1990; 11:304–309.

    CAS  Google Scholar 

  19. Gettes LS. Electrolyte abnormalities underlying lethal and ventricular arrhythmias. Circulation 1992; 85:170–176.

    Google Scholar 

  20. Clausen T, Everts ME. Is the Na, K-pump capacity in skeletal muscle inadequate during sustained work. In: Skou JC, Nørby JN, Maunsbach AB, Esmann M, eds. Progress in Clinical and Biological Research, Volume 268B. The Na+,K+-Pump. Part B: Cellular Aspects. New York: Allan R. Liss; 1988:239–244.

    Google Scholar 

  21. Kjeldsen K, Nørgaard A, Clausen T. Effects of ouabain, age and K-depletion on K-uptake in rat soleus muscle. Pfluegers Arch 1985; 404:365–373.

    CAS  Google Scholar 

  22. Clausen T, Everts ME, Kjeldsen K. Quantification of maximum capacity for active sodium-potassium transport in rat skeletal muscle. J Physiol 1987; 388:163–181.

    PubMed  CAS  Google Scholar 

  23. Skou JC. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 1965; 45:596–617.

    PubMed  CAS  Google Scholar 

  24. Nørgaard A, Kjeldsen K, Clausen T. A method for the determination of the total number of 3H-ouabain binding sites in biopsies of human skeletal muscle. Scand J Clin Lab Invest 1984; 44:509–518.

    PubMed  Google Scholar 

  25. Kjeldsen K. Regulation of the concentration of 3H-ouabain binding sites in mammalian skeletal muscle: Effects of age, K-depletion, thyroid status and hypertension. Dan Med Bull 1987; 34:15–46.

    PubMed  CAS  Google Scholar 

  26. Clausen T, Kjeldsen K. Effects of K-deficiency on Na, K-homeostasis and Na, K-ATPase in muscle. In: Giebish G, ed. Current Topics in Membranes and Transport. Potassium Transport: Physiology and Pathophysiology. Orlando: Academic Press 1987; 28:403–419

    Google Scholar 

  27. Clausen T, Everts ME. Regulation of the Na, K-pump in skeletal muscle. Kid Inter 1989; 35:1–13.

    CAS  Google Scholar 

  28. Hazeyama Y, Sparks HV. A model of potassium ion efflux during exercise of skeletal muscle. Am J Physiol 1979; 236:83R–90R.

    Google Scholar 

  29. Everts ME, Rettersbøl K, Clausen T. Effects of adrenalin on excitation-induced stimulation of the sodium-potassium pump in rat skeletal muscle. Acta Physiol Scand 1988; 134:189–198.

    PubMed  CAS  Google Scholar 

  30. Kim MS, Akera T. 02 free radicals: Cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase. Am J Physiol 1987; 252:252H–257H.

    Google Scholar 

  31. Kelley RA, Smith TW. The search for the endogenous digitalis: An alternative hypothesis. Am J Physiol 1989; 256:937C–950C.

    Google Scholar 

  32. Clausen T. Regulation of active Na+−K+ transport in skeletal muscle. Physiol Rev 1986; 66:542–580.

    PubMed  CAS  Google Scholar 

  33. Wang P, Clausen T. Treatment of attacks in hyperkalemic familial periodic paralysis by inhalation of salbutamol. Lancet 1976; i:221–227.

    Google Scholar 

  34. Montoliu J, Lens XM, Revert L. Potassium-lowering effect of albuterol for hyperkalemia in renal failure. Arch Int Med 1987; 147:713–717.

    CAS  Google Scholar 

  35. Allon M, Copkney C. Albuterol and insulin for the treatment of hyperkalemia in hemodialysis patients. Kid Inter 1990; 38:869–872.

    CAS  Google Scholar 

  36. Carlsson E, Fellenius E, Lundborg P, Svensson L. Beta-adrenoceptor blockers, plasma-potassium, and exercise. Lancet 1978; ii:424–425.

    Google Scholar 

  37. Lundborg P. The effect of adrenergic blockade on potassium concentration in different conditions. Acta Med Scand 1983; 672(suppl):121–125.

    CAS  Google Scholar 

  38. Fletcher GF, Sweeney ME, Fletcher BJ. Blood magnesium and potassium alterations with maximal treadmill exercise testing: Effects of beta-adrenergic blockade. Am Heart J 1990; 121:105–108.

    Google Scholar 

  39. Whyte KF, Reid C, Addis GJ, Whitesmith R, Reid JL. Salbutamol induced hypokalemia: The effect of theophylline alone and in combination with adrenaline. Br J Clin Pharmacol 1988; 25:571–578.

    PubMed  CAS  Google Scholar 

  40. Lipworth BJ, McDevitt DG, Struthers AD. Prior treatment with diuretic augments the hypokalemic and electrocardiographic effects of inhaled albuterol. Am J Med 1989; 86:653–657.

    PubMed  CAS  Google Scholar 

  41. Epelbaum S, Benhamou PH, Pautard JC, Devoldere C, Kremp O, Piussan C. Arret respiratoire chez un enfant asthmatique traitée par bêta-2-mimétiques et theophylline. Röle possible de 1’hypokaliémie dans les décès subits des asthmatiques. Annales de Pediatrie (Paris) 1989; 36:473–475.

    PubMed  CAS  Google Scholar 

  42. Christensen NJ, Galbo H. Sympathetic nervous activity during exercise. Annu Rev Physiol 1983; 45:139–153.

    PubMed  CAS  Google Scholar 

  43. Kjaer M, Farrel PA, Christensen NJ, Galbo H. Increased epinephrin response and inaccurate glucoregulation in exercising athletes. J Applied Physiol 1986; 61:1693–1700.

    CAS  Google Scholar 

  44. Nordrehaug JE, von der Lippe G. Hypokalemia and ventricular fibrillation in acute myocardial infarction. Br Heart J 1983; 50:525–529.

    PubMed  CAS  Google Scholar 

  45. Simpson E, Rodger JC, Raj SM, Wong C, Wilkie L, Robertson C. Pre-treatment with beta-blockers and the frequency of hypokalemia in patients with acute chest pain. Br Heart J 1987; 58:499–504.

    PubMed  CAS  Google Scholar 

  46. Moore RD. Effects of insulin upon ion transport. Biochem Biophys Acta 1983;737:1–49.

    PubMed  CAS  Google Scholar 

  47. Hiatt N, Davidson MB, Bonorris G. The effect of potassium chloride infusion on insulin secretion in vivo. Horm Metab Res 1972; 4:64–68.

    PubMed  CAS  Google Scholar 

  48. Heppel LA. The electrolytes of muscle and liver in potassium-depleted rats. Am J Physiol 1939; 127:385–392.

    CAS  Google Scholar 

  49. Nørgaard A, Kjeldsen K, Clausen T. Potassium depletion decreases the number of 3H-ouabain binding sites and the Na-K transport in skeletal muscle. Nature 1981; 293:739–741.

    PubMed  Google Scholar 

  50. Kjeldsen K, Nørgaard A, Clausen T. Effect of potassium-depletion on 3H-ouabain binding and sodium-potassium-contents in mammalian skeletal muscle. Acta Physiol Scand 1984; 122:103–117.

    PubMed  CAS  Google Scholar 

  51. Nørgaard A, Kjeldsen K, Hansen O. K+-dependent 3-O-methylfluorescein phosphatase activity in crude muscle homogenates of rodent heart ventricle. Eur J Pharmacol 1985; 113:373–382.

    PubMed  Google Scholar 

  52. Brown L, Wagner G, Hug E, Erdmann E. Ouabain binding and inotropy in acute potassium depletion in guinea pig. Cardiovasc Res 1986; 20:286–293.

    PubMed  CAS  Google Scholar 

  53. Kjeldsen K, Nørgaard A. Quantification of rat sciatic nerve Na, K-ATPase by measurements of 3H-ouabain binding in intact nerve samples. J Neurol Sei 1987; 79:205–219.

    CAS  Google Scholar 

  54. Larsen JS, Schmidt TA, Kjeldsen K. Quantification of rat cerebral cortex Na, K-ATPase with high recovery. Evaluation of age and K-depletion. In: Kaplan JH, De Weer P, eds. The Sodium Pump: Recent Developments. New York: Rockefeller University Press; Society of General Physiologists, Series 46 (II); 1990:585–589.

    Google Scholar 

  55. Schmidt TA, Larsen JS, Kjeldsen K. Quantification of rat cerebral cortex Na, K-ATPase. Effect of age and potassium depletion. J Neurochem 1992; 59:2094–2104.

    PubMed  CAS  Google Scholar 

  56. Chan PC, Sanslone WR. The influence of a low potassium diet on rat erythrocyte membrane adenosine triphosphatase. Arch Biochem Biophys 1969; 134:48–52.

    PubMed  CAS  Google Scholar 

  57. Erdmann E, Krawietz W. Increased number of ouabain binding sites in human erythrocyte membranes in chronic hypokalemia. Acta Biol Med German 1977; 36:879–883.

    PubMed  CAS  Google Scholar 

  58. Lamb JF, McCall D. Effect of prolonged ouabain treatment on Na, K, CI and Ca concentration and fluxes in cultured human cells. J Physiol 1972; 225:599–617.

    PubMed  CAS  Google Scholar 

  59. Werdan K, Wagenknecht B, Zwissler O, Brown L, Krawietz W, Erdmann E. Cardiac glycoside receptors in cultured heart cells: Characterization of one single class of high affinity receptors in heart muscle from chicken embryos. Biochem Pharmacol 1984; 33:55–70.

    PubMed  CAS  Google Scholar 

  60. Dørup I, Skajaa K, Clausen T, Kjeldsen K. Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in human skeletal muscle during treatment with diuretics. Br Med J 1988; 67:455–458.

    Google Scholar 

  61. Sadre M, Sheng HP, Fiorotto M, Nocholos BL. Electrolyte composition changes of chronically K-depleted rats after K loading. J Applied Physiol 1987; 63:765–769.

    CAS  Google Scholar 

  62. Kjeldsen K, Everts ME, Clausen T. Effect of semi-starvation and potassium deficiency on the concentration of 3H-ouabain binding sites and sodium and potassium contents in rat skeletal muscle. Br J Nutrition 1986; 56:519–532.

    CAS  Google Scholar 

  63. Blachley JD, Crider BP, Johnson JH. Extrarenal potassium adaptation: Role of skeletal muscle. Am J Physiol 1986; 251:313F–318F.

    Google Scholar 

  64. Kjeldsen K, Everts ME, Nørgaard A. Na, K-ATPase concentration in skeletal muscle: Quantification, regulation and significance. In: Skou JC, Nørby JN, Maunsbach AB, Esmann M, eds. Progress in Clinical and Biological Research, Volume 268B. The Na+,K+-Pump. Part B: Cellular Aspects. New York: Allan R. Liss; 1988:251–256.

    Google Scholar 

  65. Kjeldsen K, Nørgaard A. The effect of magnesium depletion on 3H-ouabain binding site concentration in rat skeletal muscle. Magnesium 1987; 6:55–60.

    PubMed  CAS  Google Scholar 

  66. Dyckner T, Wester PO, Widman L. Effect of peroral magnesium on plasma and skeletal muscle electrolytes in patients on long-term diuretic therapy. Int J Cardiol 1988; 19:81–87.

    PubMed  CAS  Google Scholar 

  67. Dørup I, Skajaa K. Magnesium and potassium depletion during long term diuretic treatment. Res Clin Forums 1989; 11:19–25.

    Google Scholar 

  68. Kjeldsen K, Everts ME, Clausen T. The effects of thyroid hormones on 3H-ouabain binding site concentration, Na-K-contents and 86Rb-efflux in rat skeletal muscle. Pfluegers Arch 1986; 406:529–535.

    CAS  Google Scholar 

  69. Kjeldsen K, Nørgaard A, Gøtzsche CO, Thomassen A, Clausen T. Effect of thyroid function on number of Na-K-pumps in human skeletal muscle. Lancet 1984; ii:8–10.

    Google Scholar 

  70. Feldman DL, Goldberg WM. Hyperthyroidism and periodic paralysis. Can Med Assoc J 101:667–671.

    Google Scholar 

  71. Miller D, DelCastillo J, Tsang TK. Severe hypokalemia in thyrotoxic periodic paralysis. Am J Emer Med 1989; 7:584–587.

    CAS  Google Scholar 

  72. McFadzean AJS, Yeung R. Periodic paralysis complicating thyreotoxicosis in Chinese. Br Med J 1967; 1:451–455.

    PubMed  CAS  Google Scholar 

  73. Kjeldsen K, Richter EA, Galbo H, Lortie G, Clausen T. Training increases the concentration of 3H-ouabain binding sites in rat skeletal muscle. Biochim Biophys Acta 1986; 860:708–712.

    PubMed  CAS  Google Scholar 

  74. Kjeldsen K, Bjerregaard P, Richter EA, Thomsen PEB, Nørgaard A. Na+, K+-ATPase concentration in rodent and human heart and skeletal muscle: Apparent relation to muscle performance. Cardiovasc Res 1988; 22:95–100.

    PubMed  CAS  Google Scholar 

  75. Kjeldsen K, Nørgaard A, Hau C. Human skeletal muscle Na, K-ATPase concentration quantified by 3H-ouabain binding to intact biopsies before and after moderate physical conditioning. Int J Sports Med 1990; 11:304–309.

    PubMed  CAS  Google Scholar 

  76. Klitgaard H, Clausen T. Increased total concentration of Na-K pumps in vastus lateralis muscle of old trained human subjects. J Applied Physiol 1989; 67:2491–2494.

    CAS  Google Scholar 

  77. Nørgaard A, Bjerregaard P, Baandrup U, Kjeldsen K, Reske-Nielsen E, Thomsen PEB. The concentration of the Na, K-pump in skeletal and heart muscle in congestive heart failure. Int J Cardiol 1990; 26:185–190.

    PubMed  Google Scholar 

  78. Wevers RA, Joosten MG, Biezenbos JBM, Theewes GM, Veerkamp JH. Excessive plasma K+ increase after ischemic exercise in myotonic muscular dystrophy. Muscle Nerv 1990; 13:27–32.

    CAS  Google Scholar 

  79. Nørgaard A, Kjeldsen K. Interrelation of hypokalaemia and potassium depletion and its implications: A re-evaluation based on studies of the skeletal muscle sodium, potassium-pump. Clin Sei 1991; 81:449–455.

    Google Scholar 

  80. Sterns RH, Cox M, Feig PU, Singer I. Internal potassium balance and the control of the plasma potassium concentration. Medicine 1981; 60: 339–354.

    PubMed  CAS  Google Scholar 

  81. Jones JW, Sebastian A, Huiter HN, Schambelan M, Sutton JM, Biglieri EG. Systemic and renal acid-base effect of chronic dietary potassium depletion in humans. Kid Inter 1982; 21:402–410.

    CAS  Google Scholar 

  82. Vaamonde CA, Ostler JR, Alpert HC, Rodriguez GR. Effect of potassium depletion on acidosis-induced changes in plasma potassium concentration. Min Elect Metab 1985; 11:381–388.

    CAS  Google Scholar 

  83. Knöchel JP. Hypokalemia. Adv Int Med 1984; 30:317–335.

    Google Scholar 

  84. Michaelsen KF, Clausen T. Inadequate supplies of potassium and magnesium in relief food—Implications and countermeasures. Lancet 1987; i:1421–1423.

    Google Scholar 

  85. Wrong O, Metcalfe-Gibson A, Morrison RBI, Ng ST, Howard AV. In vivo dialysis of faeces as a method of stool analysis. Clin Sei 1975; 28:357–375.

    Google Scholar 

  86. Richardson RMA, Kunau RT Jr. Potassium deficiency and intoxication. In: Seldin DW, Giebish G, eds. The Kidney: Physiology and Pathophysiology. New York: Raven Press; 1985:1251–1267.

    Google Scholar 

  87. Webster MWI, Fitzpatrick MA, Nicholls MG, Ikram H, Wells JE. Effect of enalapril on ventricular arrhythmias in congestive heart failure. Am J Cardiol 1985; 56:566–569.

    PubMed  CAS  Google Scholar 

  88. Packer M, Lee WH. Provocation of hyper- and hypokalemic sudden death during treatment with and withdrawal of converting-enzyme inhibition in severe chronic congestive heart failure. Am J Cardiol 1986; 57:347–348.

    PubMed  CAS  Google Scholar 

  89. Johnston RT, de Bono DP, Nyman CR. Preventable sudden death in patients receiving angiotensin converting enzyme inhibitors and loop/ potassium sparing diuretics. Int J Cardiol 1992; 34:213–215.

    PubMed  CAS  Google Scholar 

  90. Zuil DN. Disorders of potassium metabolism. Endocrine Metab Emer 1989; 7:771–794.

    Google Scholar 

  91. Moore D, Walker P, Ismail A. The alteration of serum potassium level during sample transit. Practitioner 1989; 233:395–397.

    PubMed  CAS  Google Scholar 

  92. Kamel KS, Ethier JH, Richardson RMA, Bear RA, Halperin ML. Urine electrolytes and osmolality: When and how to use them. Am J Nephrol 1990; 10:89–102.

    PubMed  CAS  Google Scholar 

  93. Bergström J. Muscle electrolytes in man. Scand J Clin Lab Invest 1962; 14(suppl 68):1–110.

    Google Scholar 

  94. Hansen O, Clausen T. Quantitative determination of Na+- K+-ATPase and other sarcolemmal component in muscle cells. Am J Physiol 1988; 245:1C–7C.

    Google Scholar 

  95. Jones LR, Besh HR. Isolation of canine cardiac sarcolemmal vesicles. Meth Pharmacol 1984; 5:1–12.

    CAS  Google Scholar 

  96. Kjeldsen K. Complete quantification of the total concentration of rat skeletal muscle Na, K-ATPase by measurements of 3H-ouabain binding. Biochem J 1986; 240:725–730.

    PubMed  CAS  Google Scholar 

  97. Krishna GG. Hypokalemic states: Current clinical issues. Seminars Nephrol 1990; 10:515–524.

    CAS  Google Scholar 

  98. Fisch C. Relation of electrolyte disturbances to cardiac arrhythmias. Circulation 1973; 47:408–419.

    PubMed  CAS  Google Scholar 

  99. Smith TW. Digitalis: Mechanisms of action and clinical use. N Engl J Med 1988; 318:358–365.

    PubMed  CAS  Google Scholar 

  100. Knöchel JP. Neuromuscular manifestations of electrolyte disorders. Am J Med 1982; 72:521–535.

    PubMed  Google Scholar 

  101. Knöchel JP, Schlein EM. On the mechanism of rhabdomyolysis in potassium depletion. J Clin Invest 1972; 51:1750–1758.

    PubMed  Google Scholar 

  102. Knöchel JP. Rhabdomyolysis and effects of potassium deficiency on muscle structure and function. Cardiovasc Med 1978; 3:247–261.

    Google Scholar 

  103. Dørup I, Clausen T. Effects of potassium deficiency on growth and protein synthesis in skeletal muscle and the heart of rats. Br J Nutrition 1989; 62:269–284.

    Google Scholar 

  104. Lawson DH. Adverse reactions to potassium chloride. Quarterly J Med 1974; 171:433–440.

    Google Scholar 

  105. Williams ME. Hyperkalemia. Crit Care Clinics 1991; 7:155–174.

    CAS  Google Scholar 

  106. Kaplan NM. Our appropriate concern about hypokalemia. Am J Med 1984; 77:1–4.

    PubMed  CAS  Google Scholar 

  107. Kaplan NM, Carnegie A, Raskin P, Heller JA, Simmons M. Potassium supplementation in hypertensive patients with diuretic-induced hypokalemia. N Engl J Med 1985; 312:746–749.

    PubMed  CAS  Google Scholar 

  108. Harrington JT, Isner JM, Kassirer JP. Our national obsession with potassium. Am J Med 1982; 73:155–159.

    PubMed  CAS  Google Scholar 

  109. Kassirer JP, Harrington JT. Fending off the potassium pushers. N Engl J Med 1985; 312:785–787.

    PubMed  CAS  Google Scholar 

  110. Morgan DB, Davidson C. Hypokalemia and diuretics: An analysis of publications. Br Med J 1980; 59:905–908.

    Google Scholar 

  111. Knöchel JP. Diuretic-induced hypokalemia. Am J Med 1984; 77:18–27.

    PubMed  Google Scholar 

  112. Swales JD. Salt substitutes and potassium intake: Too much potassium may be disastrous for some. Br Med J 1991; 303:1084–1085.

    CAS  Google Scholar 

  113. Sterns RH, Spital A. Disorders of internal potassium balance. Seminars Nephrol 1987; 7:399–415.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kjeldsen, K. (1994). Nonrenal Potassium Homeostasis: Hypokalemia and Potassium Depletion—Role of Skeletal Muscle Potassium-Pump (Na+,K+- ATPase). In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics