Advertisement

Endogenous Regulation of Sodium Pump Activity

  • Peter A. Doris
Part of the Endocrinology and Metabolism book series (EAM, volume 6)

Abstract

Following volume expansion, the plasma acquires the capacity to cause natriuresis, inhibit membrane sodium transport, and increase vascular reactivity. The discovery of the atrial natriuretic factor (ANF) in 1981 provided a partial explanation for the first of these phenomena, but it was rapidly recognized that ANF was not an inhibitor of sodium transport,1 nor was it able to increase vascular reactivity.2 Thus it became apparent that a 20-year effort to identify a plasma-borne substance that was natriuretic by virtue of its ability to inhibit cellular sodium transport and which might increase vascular reactivity as a result of a similar action on vascular smooth muscle had not yet succeeded. Ten years later, in 1991, this effort appeared to have achieved its first major breakthrough.

Keywords

Atrial Natriuretic Peptide Cardiac Glycoside Atrial Natriuretic Factor Sodium Transport Endogenous Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thibault G, Garcia R, Cantin M, Genest J. Atrial natriuretic factor, characterization and partial purification. Hypertension 1983; 5:1–75–1–80.Google Scholar
  2. 2.
    Pamnani MB, Clough DL, Chen JS, Link WT, Haddy FJ. Effects of atrial extract on sodium transport and blood pressure in the rat. Proc Soc Exptl Biol Med 1984; 176:123–131.Google Scholar
  3. 3.
    August JT, Nelson DH, Thorn GW. Response of normal subjects to large amounts of aldosterone. J Clin Invest 1958; 37:1549–1555.PubMedCrossRefGoogle Scholar
  4. 4.
    Relman AS, Schwartz WB. The effect of DOC A on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J Biol Med 1952; 24:540–558.PubMedGoogle Scholar
  5. 5.
    De Wardener HE, Mills IH, Clapham WF, Hayter CJ. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sei 1961; 21:249–258.Google Scholar
  6. 6.
    Buckalew VA, Nelson DB. Natriuretic and sodium transport inhibiting activity in plasma of volume expanded dogs. Kid Inter 1974; 5:12–22.CrossRefGoogle Scholar
  7. 7.
    Clarkson EM, Talner LB, De Wardener HE. The effect of plasma from blood volume expanded dogs on sodium, potassium and PAH transport of renal tubule fragments. Clin Sei 1970; 38:617–627.Google Scholar
  8. 8.
    De Bold AJ. Atrial natriuretic factor of the rat heart. Studies on isolation and properties. Proc Soc Exptl Biol Med 1982; 170:133–138.Google Scholar
  9. 9.
    Overbeck HW, Pamnani MB, Akera T, Brody TM, Haddy FJ. Depressed function of a ouabain sensitive sodium-potassium pump in blood vessels from renal hypertensive dogs. Circ Res 1976; 38:11–48–11–52.Google Scholar
  10. 10.
    Clough DL, Huot SJ, Pamnani MB, Haddy FJ. Decreased myocardial Na, K-ATPase activity in rats with reduced renal mass-saline hypertension. J Hypertension 1985; 3:583–589.CrossRefGoogle Scholar
  11. 11.
    Solandt DY, Nassim R, Cowan CR. Hypertensive effect of blood from hypertensive dogs. Lancet 1940; 1:873–874.CrossRefGoogle Scholar
  12. 12.
    Gordon DB, Drury DR, Schapiro S. The salt-fed animal as a test object for pressor substances in the blood of hypertensive animals. Am J Physiol 1953; 175:123–128.PubMedGoogle Scholar
  13. 13.
    Dahl LK, Knudsen KD, Iwai J. Humoral transmission of hypertension: Evidence from parabiosis. Circ Res 1969; 24/25:1–21–1–33.Google Scholar
  14. 14.
    Haddy FJ, Overbeck HW. The sodium, potassium pump in volume expanded hypertension. Life Sei 1976; 19:935–948.CrossRefGoogle Scholar
  15. 15.
    Blaustein MP. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol 1977; 232:C167–C173.Google Scholar
  16. 16.
    Blaustein MP, Ashida T, Hamlyn JM. Sodium metabolism and hypertension: How are they linked? Klin Wochenschr 1987; 65:21–32.PubMedGoogle Scholar
  17. 17.
    Rasgado-Flores H, Blaustein MP. Calcium influx and sodium efflux mediated by the Na/Ca exchanger in giant barnacle muscle cells are promoted by intracellular Ca. Biophysic J 1986; 49:546a.Google Scholar
  18. 18.
    Losse H, Wehmeyer H, Wessels F. The water and electrolyte content of erythrocytes in arterial hypertension. Klin Wochenschr 1960; 38:393–395.PubMedCrossRefGoogle Scholar
  19. 19.
    MacGregor G, De Wardener H. Is a circulating sodium transport inhibitor involved in the pathogenesis of essential hypertension? In: Fregly M, Kare M, eds. The role of salt in cardiovascular hypertension. New York: Academic Press; 1982:331–343.Google Scholar
  20. 20.
    Poston L. Endogenous sodium pump inhibitors: A role in essential hypertension? Clin Sei 1987; 72:647–655.Google Scholar
  21. 21.
    Poston L, Sewell RB, Wilkinson SP, Richardson PJ, Williams R, Clarkson EM, MacGregor GA, De Wardener HE. Evidence for a circulating sodium transport inhibitor in essential hypertension. Br Med J 1981; 282:847–849.CrossRefGoogle Scholar
  22. 22.
    Edmondson RPS, MacGregor GA. Leucocyte cation transport in essential hypertension: its relation to the renin-angiotensin system. Br Med J 1981; 282:1267–1269.CrossRefGoogle Scholar
  23. 23.
    Gruber K, Rudel LL, Bullock BC. Increased circulating levels of an endogenous digoxin-like factor in hypertensive monkeys. Hypertension 1982; 4:348–354.PubMedGoogle Scholar
  24. 24.
    Gruber KA, Whitaker JM, Buckalew VM. Endogenous digitalis-like substance in plasma of volume-expanded dogs. Nature 1980; 287:743–745.PubMedCrossRefGoogle Scholar
  25. 25.
    Hamlyn JM, Ringel R, Schaeffer J, Levinson PD, Hamilton BP, Kowarski AA, Blaustein M. A criculating inhibitor of (Na, K)-ATPase associated with essential hypertension. Nature 1982; 300:650–652.PubMedCrossRefGoogle Scholar
  26. 26.
    Huot S, Pamnani MB, Clough DL, Haddy FJ. The role of sodium intake, the Na-K-pump and a ouabain-like humoral agent in the genesis of reduced renal mass hypertension. Am J Nephrol 1983; 3:92–99.PubMedCrossRefGoogle Scholar
  27. 27.
    Huot SJ, Pamnani MB, Clough DL, Buggy J, Bryant HJ, Harder DR, Haddy FJ. Sodium-potassium pump activity in reduced renal mass hypertension. Hypertension 1983; 5:1–94–1–100.Google Scholar
  28. 28.
    Pamnani MB, Whitehorn WV, Clough DL, Haddy FJ. Effects of canrenone on blood pressure in rats with reduced renal mass. Am J Hypertens 1990; 3:188–195.PubMedGoogle Scholar
  29. 29.
    Brody MJ, Johnson AK. Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation, and hypertension. In: Martini L, Ganong WF, eds. Frontiers in Neuroendocrinology. New York: Raven Press; 1980:249–292.Google Scholar
  30. 30.
    Millett JA, Holland SA, Alaghband-Zadeh J, De Wardener HE. Na, K-ATPase-inhibiting and glucose-6-phosphate dehydrogenase-stimulating activity of plasma and hypothalamus of the Okamoto spontaneously hypertensive rat. J Endocrinol 1986; 108:69–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Holland S, Millett J, Alaghband-Zadeh J, De Wardener H, Pamnani M, Haddy F. Cytochemically detectable glucose-6-phosphate dehydrogenase-stimulating/Na-K-ATPase-inhibiting activity of plasma and hypothalamus in reduced renal mass hypertension. Am J Hypertens 1991; 4:315–320.PubMedGoogle Scholar
  32. 32.
    Wauquier I, Pernollet M-G, Grichois M-L, Lacour B, Meyer P, Devynck M-A. Endogenous digitalislike circulating substances in spontaneously hypertensive rats. Hypertension 1988; 12:108–116.PubMedGoogle Scholar
  33. 33.
    Hamlyn JM. Increased levels of a humoral digitalis-like factor in deoxycorticosterone acetate-induced hypertension in the pig. J Endocrinol 1989; 122:409–420.PubMedCrossRefGoogle Scholar
  34. 34.
    Josephson L, Cantley LC. Isolation of a potent (Na, K)-ATPase inhibitor from striated muscle. Biochemistry 1977; 16:4572–4578.PubMedCrossRefGoogle Scholar
  35. 35.
    Cantley LC, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G. Vanadate is potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 1977; 252:7421–7423.PubMedGoogle Scholar
  36. 36.
    Haupert GT, Sancho JM. Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sei USA 1979; 76:4658–4660.CrossRefGoogle Scholar
  37. 37.
    Fishman MC. Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sei USA 1979; 76:4661–4663.CrossRefGoogle Scholar
  38. 38.
    Godfraind T, Castenada-Hernandez G. Properties of a digitalis-like factor extracted from guinea pig brain. Arch Int Pharmacodyn 1981; 250:316–317.PubMedGoogle Scholar
  39. 39.
    Hallaq HA, Haupert GT. Positive inotropic effects of the endogenous Na/K-transporting ATPase inhibitor from the hypothalamus. Proc Natl Acad Sei USA 1989; 86:10080–10084.CrossRefGoogle Scholar
  40. 40.
    Haber E, Haupert GT. The search for a hypothalamic Na, K-ATPase inhibitor. Hypertension 1987; 9:315.Google Scholar
  41. 41.
    Carilli CT, Berne M, Cantley LC, Haupert GT. Hypothalamic factor inhibits the (Na, K)-ATPase from the extracellular surface. J Biol Chem 1985; 260:1027–1031.PubMedGoogle Scholar
  42. 42.
    Shimoni Y, Gotsman M, Deutsch J, Kachalsky S, Lichtstein D. Endogenous ouabain-like compound increases heart muscle contractility. Nature 1984; 307:369–371.PubMedCrossRefGoogle Scholar
  43. 43.
    Lichtstein D, Samuelov S. Endogenous “ouabain like” activity in rat brain. Biochem Biophys Res Commun 1980; 96:1518–1523.PubMedCrossRefGoogle Scholar
  44. 44.
    Morgan K, Lewis MD, Spurlock G, Collins PA, Foord SM, Southgate K, Scanion MF, Mir MA. Characterization and partial purification of the sodium-potassium-ATPase inhibitor released from cultured rat hypothalamic cells. J Biol Chem 1985; 260:13595–13600.PubMedGoogle Scholar
  45. 45.
    Mir MA, Chappell SP, Morgan K, Lewis MD, Scanion MF, Lewis MJ. Hypothalamic sodium transport inhibitor and vascular reactivity. J Hypertension 1986; 4:S233–S235.CrossRefGoogle Scholar
  46. 46.
    Halperin J. Schaff er R, Galvez L, Malare S. Ouabain-like activity in human cerebrospinal fluid. Proc Natl Acad Sei USA 1983; 80:6101–6104.Google Scholar
  47. 47.
    Lichtstein D, Mine D, Bourrit A, Deutsch J, Karlish SJD, Belmaker H, Rimon R, Palo J. Evidence for the presence of a ouabain-like compound in human cerebrospinal fluid. Brain Res 1985; 325:13–19.PubMedCrossRefGoogle Scholar
  48. 48.
    Takahashi H, Matsusawa M, Suga K, Ikegaki I, Nishimura M, Yoshimura M, Ihara N, Yamada H, Sano Y. Hypothalamic digitalis-like substance is released with sodium loading in rats. Am J Hypertens 1988; 1:147–151.Google Scholar
  49. 49.
    Schreiber V, Stepan J, Gregorova I, Krejcikova J. Crossed digoxin immunoreactivity in chromatography fractions of rat adrenal extract. Biochem Pharmacol 1981; 30:805.PubMedCrossRefGoogle Scholar
  50. 50.
    Castenada-Hernandez G, Godfraind T. Effect of high sodium intake on tissue distribution of endogenous digitalis-like material in the rat. Clin Sei USA 1984; 66:225.Google Scholar
  51. 51.
    Ng Y-C, Akera T, Han C-S, Braselton WE, Kennedy RH, Temma K, Brody T, Sato P. Ascorbic acid: An endogenous inhibitor of isolated Na, K-ATPase. Biochem Pharmacol 1985; 34:2525–2530.PubMedCrossRefGoogle Scholar
  52. 52.
    Doris PA. Immunological evidence that the adrenal gland is the source of an endogenous digitalis-like factor in the rat. Endocrinology 1988; 123:2440–2444.PubMedCrossRefGoogle Scholar
  53. 53.
    Doris PA, Kilgore MW, Durham D, Alberts D, Stocco DM. An endogenous digitalis-like factor derived from the adrenal gland: Studies of adrenocortical tumor cells. Endocrinology 1989; 125:2580–2586.PubMedCrossRefGoogle Scholar
  54. 54.
    Gault MH, Vasdev S, Longerich L, Johnson E, Farid N, Legal Y, Prabhakaran V, Fine A. Evidence for an adrenal contribution to plasma digitalis-like factors. Clin Physiol Biochem 1988; 6:253–261.PubMedGoogle Scholar
  55. 55.
    Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, Mathews WR, Ludens JH. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sei USA 1991; 88:6259–6263.CrossRefGoogle Scholar
  56. 56.
    Pernollet MG, Ali RM, Meyer P, Devynck MA. Are the circulating digitalislike compounds of adrenal origin? J Hypertension 1986; 4(suppl 6):382–384.Google Scholar
  57. 57.
    Shaikh IM, Lau BWC, Siegfried BA, Valdes R. Isolation of digoxin-like immunoreactive factors from mammalian adrenal cortex. J Biol Chem 1991; 266:13672–13678.PubMedGoogle Scholar
  58. 58.
    Tamura M, Lam T-T, Inagami T. Isolation and characterization of a specific endogenous Na, K-ATPase inhibitor from bovine adrenal. Biochemistry 1988; 27:4244–4253.PubMedCrossRefGoogle Scholar
  59. 59.
    Tamura M, Lam T-T, Inagami T. Specific endogenous Na, K-ATPase inhibitor purified from bovine adrenal. Biochem Biophys Res Commun 1987; 149:468.PubMedCrossRefGoogle Scholar
  60. 60.
    Doris PA. Digoxin-like immunoreactivity in rat plasma: Effect of sodium and calcium intake. Life Sei 1988; 42:783–790.CrossRefGoogle Scholar
  61. 61.
    Doris PA, Stocco DM. An endogenous digitalis-like factor derived from the adrenal gland: Studies of adrenal tissue from various sources. Endocrinology 1989; 125:2573–2579.PubMedCrossRefGoogle Scholar
  62. 62.
    Goto A, Yamada K, Ishii M, Yoshioka M, Ishiguro T, Eguchi C, Sagimoto T. Purification and characterization of human urine-derived digitalis-like factor. Biochem Biophys Res Commun 1988; 154:847–853.PubMedCrossRefGoogle Scholar
  63. 63.
    Goto A, Yamada K, Ishii M, Yoshioka MIT, Sugimoto T. The effects of urinary digitalis-like factor on cultured vascular smooth muscle cells. Hypertension 1988; 11:645–650.PubMedGoogle Scholar
  64. 64.
    Goto A, Yamada K, Ishii M, Yoshioka M, Ishiguro T, Eguchi C, Sugimoto T. Urinary sodium pump inhibitor raises cytosolic free calcium concentration in rat aorta. Hypertension 1989; 13:916–921.PubMedGoogle Scholar
  65. 65.
    Goto A, Ishiguro T, Yamada K, Ishii M, Yoshioka M, Eguchi C, Shimora M, Sugimoto T. Isolation of a urinary digitalis-like factor indistinguishable from digoxin. 1990; 173:1093–1101.Google Scholar
  66. 66.
    Goto A, Tamada K, Ishii M, Sugimoto T. Does digoxin-like immunoreactivity really represent natriuretic hormone? Nephron 1990; 54:99–100.PubMedCrossRefGoogle Scholar
  67. 67.
    Mathews WR, DuCharme DW, Hamlyn JM, Harris DW, Mandel F, Clark MA, Ludens JH. Mass spectral characterization of an endogenous digitalislike factor from human plasma. Hypertension 1991; 17:930–935.PubMedGoogle Scholar
  68. 68.
    Ludens JH, Clark MA, DuCharme DW, Lutzke BS, Mandel F, Mathews WR, Sutter DM, Hamlyn JM. Purification of an endogenous digitalislike factor from human plasma for structural analysis. Hypertension 1991; 17:923–929.PubMedGoogle Scholar
  69. 69.
    Harris DW, Clark MA, Fisher JF, Hamlyn JM, Kolbasa KP, Ludens JH, DuCharme DW. Development of an immunoassay for endogenous digitalislike factor. Hypertension 1991; 17:936–943.PubMedGoogle Scholar
  70. 70.
    Bova S, Blaustein MP, Ludens JH, Harris DW, DuCharme DW, Hamlyn J. Effects of an endogenous ouabainlike compound on heart and aorta. Hypertension 1991; 17:944–950.PubMedGoogle Scholar
  71. 71.
    Deray G, Rieu M, Devynck MA, Perilollet M-G, Chanson P, Luton JP, Meyer P. Evidence of an endogenous digitalis-like factor in the plasma of patients with acromegaly. N Engl J Med 1987; 316:575–580.PubMedCrossRefGoogle Scholar
  72. 72.
    Ng LL, Evans DJ. Leucocyte sodium transport in acromegaly. Clin Endocrinol 1987; 26:471–480.CrossRefGoogle Scholar
  73. 73.
    Ng LL, Hockaday TDR. Endogenous digitalis-like factors in acromegaly. N Engl J Med 1987; 317:572–573.PubMedGoogle Scholar
  74. 74.
    Soszynski P, Slowinska-Szrednicka J, Kasperlik-Zaluska A, Zgliczynski S. Endogenous natriueretic factors: Atrial natriuretic hormone and digitalis-like substance in Cushing’s syndrome. J Endocrinol 1990; 129:453–458.CrossRefGoogle Scholar
  75. 75.
    Soszynski P, Slowinska-Srzednicka J, Zgliczynski S. Increased activity of digoxin-like substance in low-renin hypertension on acromegaly. Clin Exp Hypertens 1990; A12:533–549.CrossRefGoogle Scholar
  76. 76.
    Graves SW, Adler G, Stuenkel C, Sharma K, Brena A, Majoub J. Increases in plasma digitalis-like factor activity during insulin-induced hypoglycemia. Neuroendocrinology 1989; 49:586–591.PubMedCrossRefGoogle Scholar
  77. 77.
    Giampetro O, Cleirco A, Gregori G, Bertoli S, Del Chicca MG, Miccoli R, Luchetti A, Cruschelli L, Navalesi R. Increased urinary excretion of digoxin-like immunoreactive substance by insulin-dependent diabetic patients: A linkage with hypertension? Clin Chem 1988; 34:2418–2422.Google Scholar
  78. 78.
    Shilo L, Adawi A, Soloman G, Shenkman L. Endogenous digoxin-like immunoreactivity in congestive heart failure. Br Med J 1987; 295:415–416.CrossRefGoogle Scholar
  79. 79.
    Bagrov AY, Fedorova OV, Maslova MN, Roukoyatkina NI, Ukhanova MV, Zhabko EP. Endogenous plasma Na, K-ATPase inhibitory activity and digoxin like immunoreactivity after acute myocardial infarction. Cardiovasc Res 1991; 25:371–377.PubMedCrossRefGoogle Scholar
  80. 80.
    Kerkez S, Poston L, Wolfe CD, Quartero HW, Carabelli P, Petruckevitch A, Hiltom PJ. A longitudinal study of maternal digoxin-like immunoreactive substances in normotensive pregnancy and pregnancy-induced hypertension. Am J Obstet Gynecol 1990; 162:783–787.PubMedGoogle Scholar
  81. 81.
    Morris JF, McEachern MD, Poston L, Smith SE, Mulvany MJ, Hilton PJ. Evidence for an inhibitor of leucocyte sodium transport in the serum of neonates. Clin Sei 1987; 73:291–297.Google Scholar
  82. 82.
    Ebarra H, Suzuki S, Nagashima K, Shimano S, Kuruome T. Digoxin-like immunoreactive substances in urine and serum from preterm and term infants: Relationship to renal excretion of sodium. J Pediatrics 1986; 108:760–762.CrossRefGoogle Scholar
  83. 83.
    Seccombe DW, Pudek MR, Whitfield MF, Jacobson BE, Wittmann BK, King JF. Perinatal changes in a digoxin-like immunoreactive substance. Pediatric Research 1984; 18:1097–1099.PubMedCrossRefGoogle Scholar
  84. 84.
    Valdes R, Graves SW, Brown BA, Landt M. Endogenous substance in newborn infants causing false positive digoxin measurements. J Pediatrics 1983; 102:947–950.CrossRefGoogle Scholar
  85. 85.
    Delva P, Capra C, Degan M, Minuz P, Covi G, Milan L, Steele A, Lechi A. High plasma levels of a ouabain-like factor in normal pregnancy and in pre-eclampsia. Eur J Clin Invest 1989; 19:95–100.PubMedGoogle Scholar
  86. 86.
    Fievet P, Gregoire I, Fourmier A, Roth D, Siegenthaler G, El Esper N, Favre H, De Bold A. Ouabain-like natriuretic factor and atrial natriuretic factor in pregnancy. Kid Inter 1988; 34:S89–S92.Google Scholar
  87. 87.
    Ringel R, Pinkas G, Hamlyn J, Mullins L, Hamilton B. Endogenous inhibition of red blood cell Na, K-ATPase in essential and pregnancy-induced hypertension. Clin Exp Hypertens 1989; A11:587–601.CrossRefGoogle Scholar
  88. 88.
    Goodlin R, Makowski EL. Fetal endotoxins and complications of pregnancy. Western J Med 1988; 148:590–592.Google Scholar
  89. 89.
    Witherspoon L, Shuler S, Alyea K, Fegueroa J, Neely H. Digoxin-like substance in term pregnancy, newborns, and renal failure. J Nucl Med 1986; 27:1418–1422.PubMedGoogle Scholar
  90. 90.
    Kovacs L, Lichardus B, Bircak J, Ponecova M, Masurova A, Stefanilova J, Bruchac D, Sulyok E. Endogenous digoxin-like immunoreactivity in urine of preterm infants with late hyponatremia. Contrib Nephrol 1988; 67:145–148.PubMedGoogle Scholar
  91. 91.
    Morris JF, Poston L, Wolfe CD, Hilton PJ. A comparison of endogenous digoxin-like immunoreactivity and sodium transport inhibitory activity in umbilical arterial and venous serum. Clin Sei 1988; 75:577–579.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Peter A. Doris

There are no affiliations available

Personalised recommendations