Skip to main content

Clinical Pharmacology of Calcium Channels

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 113 Accesses

Abstract

Calcium (Ca2+) influx through plasmalemmal channels, driven by the electrochemical gradient for Ca2+, is a crucial step in several biologic processes such as muscle contraction, neurotransmission, and hormone secretion. As regulators of transmembrane charge movements, Ca2+ channels may also be involved in electric events such as impulse generation and propagation. Ca2+ channels may be regarded as ion-selective pores composed of membrane-spanning glycoproteins, which allow Ca2+ to traverse the lipid bilayer in response to different stimuli.1 The best characterized plasmalemmal Ca2+ channels are those activated by membrane depolarization. These channels are the principal targets of the calcium antagonists presently used in clinical therapy. Ca2+ channels insensitive to changes in membrane potential, such as those activated by agonist-receptor interactions, represent another category of membrane channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hille B. Ionic channels of excitable membranes. Sunderland, Mass.: Sinauer; 1985.

    Google Scholar 

  2. Smith JS, Coronado R, Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature 1985; 16:446–449.

    Article  Google Scholar 

  3. Sitsapesan R, Williams AJ. Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J Physiol 1990; 423:425–439.

    PubMed  CAS  Google Scholar 

  4. Gill DL, Veda T, Chueh SH, Noel MW. Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature 1986; 320:461-464.

    Article  PubMed  CAS  Google Scholar 

  5. Saida K, van Breemen C. GTP requirement for inositol-1,4,5-trisphosphate-induced Ca2+ release from sarcoplasmic reticulum in smooth muscle. Biochem Biophys Res Commun 1987; 144:1313–1316.

    Article  PubMed  CAS  Google Scholar 

  6. Saida K, Twort C, van Breemen C. The specific GTP requirement for inositol 1,4,5-trisphosphate-induced Ca2+ release from skinned vascular smooth muscle. J Cardiovasc Pharmacol 1988; 12(suppl 5):S47–S50.

    PubMed  CAS  Google Scholar 

  7. Kobayashi S, Kanaide H, Nakamura M. K+-depolarization induces a direct release of Ca2+ from intracellular storage sites in cultured vascular smooth muscle cells from rat aorta. Biochem Biophys Res Commun 1985; 129:877–884.

    Article  PubMed  CAS  Google Scholar 

  8. Kanaide H, Kobayashi S, Nishimura J, Hasegawa M, Shogakiuchi Y, Matsumoto T, Nakamura N. Quin2 microfluorometry and effects of verapamil and diltiazem on calcium release from rat aorta smooth muscle cells in primary culture. Circ Res 1988; 63:16–26.

    PubMed  CAS  Google Scholar 

  9. Bolton TB. Mechanisms of action of transmitter and other substances on smooth muscle. Physiol Rev 1979; 59:606–718.

    PubMed  CAS  Google Scholar 

  10. van Breemen C, Aaronson P, Loutzenhiser R. Na+, Ca2+ interactions in mammalian smooth muscle. Pharmacol Rev 1979; 30:167–208.

    Google Scholar 

  11. Mayer ML, Miller RJ. Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sei 1990; 11:254–260.

    Article  CAS  Google Scholar 

  12. Changeux J-P, Giraudat J, Dennis M. The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel. Trends Pharmacol Sei 1987; 8:459–465.

    Article  CAS  Google Scholar 

  13. Bormann J. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci 1988; 11:112–116.

    Article  PubMed  CAS  Google Scholar 

  14. Hartig PR. Molecular biology of 5-HT receptors. Trends Pharmacol Sei 1989; 10:64–69.

    Article  CAS  Google Scholar 

  15. Brum G, Osterrieder W, Trautwein W. ß-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pfluegers Arch 1984; 401:111–118.

    Article  CAS  Google Scholar 

  16. Trautwein W, Hescheler J. Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol 1990; 52:257–274.

    Article  PubMed  CAS  Google Scholar 

  17. Kostyuk PG. Calcium channels in cellular membranes. J Mol Neurosci 1990; 2:123–141.

    Article  PubMed  CAS  Google Scholar 

  18. Brown AM, Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol 1988; 254:H401–H410.

    PubMed  CAS  Google Scholar 

  19. Dolphin AC. G protein modulation of calcium currents in neurons. Annu Rev Physiol 1990; 52:243–255.

    Article  PubMed  CAS  Google Scholar 

  20. Schultz G, Rosenthal W, Hescheler J. Role of G proteins in calcium channel modulation. Annu Rev Physiol 1990; 52:275–292.

    Article  PubMed  CAS  Google Scholar 

  21. von Tscharner Y, Prod’hom B, Baggiolini M, Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 1986; 324:369–372.

    Google Scholar 

  22. Kuno M, Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 1987; 326:301–304.

    Article  PubMed  CAS  Google Scholar 

  23. Benham CD, Tsien RW. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 1987; 328:275–278.

    Article  PubMed  CAS  Google Scholar 

  24. Mahaut-Smith MP, Rink TJ, Sage SO. Single channels in human platelets activated by ADP. J Physiol 1989; 415:24P.

    Google Scholar 

  25. Ascher P, Nowak L. Calcium permeability of the channels activated by N-methyl-D-aspartate (NMDA) in isolated mouse central neurones. J Physiol 1986; 377:35P.

    Google Scholar 

  26. Casteels R, Droogmans G, Missiaen L. Agonist-induced entry of Ca2+ in smooth muscle cells. Neurochem Int 1990; 17:297–302.

    Article  PubMed  CAS  Google Scholar 

  27. Hallam TJ, Rink TJ. Receptor-mediated Ca2+ entry: Diversity of function and mechanism. Trends Pharmacol Sei 1989; 10:8–10.

    Article  CAS  Google Scholar 

  28. Nishimura J, Khalil RA, van Breemen C. Agonist-induced vascular tone. Hypertension 1989; 13:835–844.

    PubMed  CAS  Google Scholar 

  29. van Breemen C, Saida K. Cellular mechanisms regulating [Ca2+]i smooth muscle. Annu Rev Physiol 1989; 51:315–329.

    Article  PubMed  Google Scholar 

  30. Somlyo AV, Franzini-Armstrong C. New views of smooth muscle structure using freezing, deep-etching and rotary shadowing. Experientia 1985; 41:841–856.

    Article  PubMed  CAS  Google Scholar 

  31. Meldolesi J, Clementi E, Fasolato C, Zacchetti D, Pozzan T. Ca2+ influx following receptor activation. Trends Pharmacol Sei 1991; 12:289–292.

    Article  CAS  Google Scholar 

  32. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 1989; 51:367–384.

    Article  PubMed  CAS  Google Scholar 

  33. Miller RJ. Multiple calcium channels and neuronal function. Science 1987; 235:46–52.

    Article  PubMed  CAS  Google Scholar 

  34. Dascal N. Analysis and functional characteristics of dihydropyridine-sensitive and -insensitive calcium channel proteins. Biochem Pharmacol 1990; 40:1171–1178.

    Article  PubMed  CAS  Google Scholar 

  35. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990; 259:C3–C18.

    PubMed  CAS  Google Scholar 

  36. Swandulla D, Carbone E, Lux HD. Do calcium channel classifications account for neuronal calcium channel diversity? TINS 1991; 14:46–51.

    PubMed  CAS  Google Scholar 

  37. Tsien RW, Ellinor PT, Home WA. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sei 1991; 12:349–354.

    Article  CAS  Google Scholar 

  38. Dolphin AC. Regulation of calcium channel activity by GTP binding proteins and second messengers. Biochim Biophys Acta 1991; 1091:68–80.

    Article  PubMed  CAS  Google Scholar 

  39. Sher E, Biancardi E, Passafaro M, Clementi F. Physiopathology of neuronal voltage-operated calcium channels. FASEB J 1991; 5:2677–2683.

    PubMed  CAS  Google Scholar 

  40. Kass RS, Sanguinetti MC. Inactivation of calcium channel current in the calf cardiac purkin je fiber. Evidence for voltage-and calcium-mediated mechanisms. J Gen Physiol 1984; 84:705–726.

    Article  PubMed  CAS  Google Scholar 

  41. Llinas R, Sugimori M, Lin J-W, Cherksey B. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sei USA 1989; 86:1689–1693.

    Article  CAS  Google Scholar 

  42. Regan LJ, Sah DWY, Bean BP. Ca2+ channels in rat central and peripheral neurons: High-threshold current resistant to dihydropyridine blockers and ω-conotoxin. Neuron 1991; 6:269–280.

    Article  PubMed  CAS  Google Scholar 

  43. Bean BP. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 1985; 86:1–30.

    Article  PubMed  CAS  Google Scholar 

  44. Benham CD, Hess P, Tsien RW. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ Res 1987; 61:110–116.

    Google Scholar 

  45. Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 1985; 316:440–443.

    Article  PubMed  CAS  Google Scholar 

  46. Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 1988; 11:431–438.

    Article  PubMed  CAS  Google Scholar 

  47. Hagiwara N, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 1988; 395:233–253.

    PubMed  CAS  Google Scholar 

  48. Jahnsen H, Llinas R. Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. J Physiol 1984; 349:205–226.

    PubMed  CAS  Google Scholar 

  49. Pelzer D, Grant AO, Cavalie A, Pelzer S, Sieber M, Hofmann F, Trautwein W. Calcium channels reconstituted from the skeletal muscle DHP receptor protein complex and its a1 peptide subunit in lipid bilayers. Ann NY Acad Sei 1989; 560:138–154.

    Article  CAS  Google Scholar 

  50. Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N. The roles of the subunits in the function of the calcium channel. Science 1991; 253:1553–1557.

    Article  PubMed  CAS  Google Scholar 

  51. Tanabe T, Beam KG, Adams BA, Niidome T, Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 1990; 346:567–569.

    Article  PubMed  CAS  Google Scholar 

  52. Koch WJ, Ellinor PT, Schwartz A. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. Evidence for the existence of alternatively spliced forms. J Biol Chem 1990; 265:17786–17791.

    PubMed  CAS  Google Scholar 

  53. Kostyuk PG. Calcium channels in the neuronal membrane. Biochim Biophys Acta 1981; 650:128–150.

    PubMed  CAS  Google Scholar 

  54. Hurwitz L. Pharmacology of calcium channels and smooth muscle. Ann Rev Pharmacol Toxicol 1986; 26:225–258.

    Article  CAS  Google Scholar 

  55. Tsien RW, Hess P, McCleskey EW, Rosenberg RL. Calcium channels: Mechanisms of selectivity, permeation, and block. Ann Rev Biophys Biophys Chem 1987; 16:265–290.

    Article  CAS  Google Scholar 

  56. Docherty RJ. Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma x glioma hybrid (NG108–15) cells. J Physiol 1988; 398:33–47.

    PubMed  CAS  Google Scholar 

  57. Fox AP, Nowycky MC, Tsien RW. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol 1987; 394:149–172.

    PubMed  CAS  Google Scholar 

  58. Siesjö BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J Cereb Blood Flow Metab 1989; 9:127–140.

    Article  PubMed  Google Scholar 

  59. Buchan AM. Do NMD A antagonists protect against cerebral ischemia: Are clinical trials warranted? Cerebrovasc Brain Metab Rev 1990; 2:1–26.

    PubMed  CAS  Google Scholar 

  60. Llinas R, Yarom Y. Specific blockage of the slow threshold calcium channel by high molecular weight alcohols. Soc Neurosci Abst 1986; 12:174.

    Google Scholar 

  61. Reynolds IJ, Wagner JA, Snyder SH, Thayer SA, Olivera BM, Miller RJ. Brain voltage-sensitive calcium channel subtypes differentiated by ω-conotoxin fraction GVIA. Proc Natl Acad Sei USA 1986; 83:8804–8807.

    Article  CAS  Google Scholar 

  62. McCleskey EW, Fox AP, Feldman DH, Cruz LJ, Olivera BM, Tsien RW, Yoshikami D. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sei USA 1987; 84:4327–4331.

    Article  CAS  Google Scholar 

  63. Sher E, Clementi F. ω-conotoxin-sensitive voltage-operated calcium channels in vertebrate cells. Neuroscience 1991; 42:301–307.

    Article  PubMed  CAS  Google Scholar 

  64. Suzuki N, Yoshioka T. Differential blocking action of synthetic ω-conotoxin on components of Ca2+ channel current in clonal GH3 cells. Neurosci Lett 1987; 75:235–239.

    Article  PubMed  CAS  Google Scholar 

  65. Lin J-W, Rudy B, Llinas R. Funnel-web spider venom and a toxin fraction block calcium current expressed from rat brain mRNA in Xenopus oocytes. Proc Natl Acad Sei USA 1990; 87:4538–4542.

    Article  CAS  Google Scholar 

  66. Janis RA, Silver PJ, Triggle DJ. Drug action and cellular calcium regulation. Adv Drug Res 1987; 16:309–591.

    CAS  Google Scholar 

  67. Nayler WG. Calcium antagonists. London: Academic Press; 1988.

    Google Scholar 

  68. Godfraind T. Classification of calcium antagonists. Am J Cardiol 1987; 59:11B–23B.

    Article  PubMed  CAS  Google Scholar 

  69. Tytgat J, Vereecke J, Carmeliet E. Differential effects of verapamil and flunarizine on cardiac L-type and T-type Ca channels. Naunyn-Schmiedeberg’s Arch Pharmacol 1988; 337:690–692.

    CAS  Google Scholar 

  70. Terada K, Ohya Y, Kitamura K, Kuriyama H. Actions of flunarizine, a Ca++ antagonist, on ionic currents in fragmented smooth muscle cells of the rabbit small intestine. J Pharmacol Exp Ther 1987; 240:978–983.

    PubMed  CAS  Google Scholar 

  71. Leboeuf J, Leoty C, Lamar J-C, Massingham R. Comparative effects of bepridil, its quaternary derivative CERM 11888 and verapamil on caffeine-induced contracture in ferret hearts. Br J Pharmacol 1989; 98:119–126.

    PubMed  CAS  Google Scholar 

  72. John GW, Fabregues E, Kamal M, Massingham R. Caffeine-induced contractions in rabbit isolated renal artery are differentially inhibited by calcium antagonists. Eur J Pharmacol 1991; 196:307–312.

    Article  PubMed  CAS  Google Scholar 

  73. Schachtele C, Wagner B, Rudolph C. Effect of Ca2+ entry blockers on myosin light-chain kinase and protein kinase C. Eur J Pharmacol 1989; 163:151–155.

    Article  PubMed  CAS  Google Scholar 

  74. Glossmann H, Ferry DR, Lübbecke F, Mewes R, Hofmann F. Calcium channels: Direct identification with radioligand binding studies. Trends Pharmacol Sei 1982; 3:431–437.

    Article  CAS  Google Scholar 

  75. Glossmann H, Ferry DR, Göll A, Striessnig J, Schober M. Calcium channels: Basic properties as revealed by radioligand binding studies. J Cardiovasc Pharmacol 1985; 7(suppl 6):S20–S30.

    Article  PubMed  CAS  Google Scholar 

  76. Triggle DJ. Calcium, calcium channels, and calcium channel antagonists. Can J Physiol Pharmacol 1990; 68:1474–1481.

    Article  PubMed  CAS  Google Scholar 

  77. DePover A, Grupp IL, Grupp G, Schwartz A. Diltiazem potentiates the negative inotropic action of nimodipine in heart. Biochem Biophys Res Commun 1983; 114:922–929.

    Article  PubMed  CAS  Google Scholar 

  78. Hosey MM, Lazdunski M. Calcium channels: Molecular pharmacology, structure and regulation. J Membr Biol 1988; 104:81–105.

    Article  PubMed  CAS  Google Scholar 

  79. Triggle DJ. Calcium antagonists. History and perspective. Stroke 1990; 21:IV-49-IV-58.

    Google Scholar 

  80. Nokin P, Clinet M, Beaufort P, Meysmans L, Laruel R, Chatelain P. SR33557, a novel calcium entry blocker. II. Interactions with 1,4-dihydropyridine, phenylalkylamine and benzothiazepine binding sites in rat heart sarcolemmal membranes. J Pharmacol Exp Ther 1990; 255:600–607.

    PubMed  CAS  Google Scholar 

  81. Rampe D, Triggle DJ. New ligands for L-type Ca2+ channels. Trends Pharmacol Sei 1990; 11:112–115.

    Article  CAS  Google Scholar 

  82. Godfraind T, Govoni S. Increasing complexity revealed in regulation of Ca2+ antagonist receptor. Trends Pharmacol Sei 1989; 10:297–301.

    Article  CAS  Google Scholar 

  83. Hescheler J, Pelzer D, Trübe G, Trautwein W. Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pfluegers Arch 1982; 393:287–291.

    Article  CAS  Google Scholar 

  84. Hering S, Bolton TB, Beech DJ, Lim SP. Mechanism of calcium channel’ block by D600 in single smooth muscle cells from rabbit ear artery. Circ Res 1989; 64:928–936.

    PubMed  CAS  Google Scholar 

  85. Zernig G. Widening potential for Ca2+ antagonists: non-L-type Ca2+ channel interaction. Trends Pharmacol Sei 1990; 11:38–44.

    Article  CAS  Google Scholar 

  86. Andersson K-E. Pharmacodynamic profiles of different calcium channel blockers. Acta Pharmacol Toxicol 1986; 58(suppl II):31–42.

    Article  CAS  Google Scholar 

  87. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 1983; 303:535–537.

    Article  PubMed  CAS  Google Scholar 

  88. Schramm M, Thomas G, Towart R, Franckowiak G. Activation of calcium channels by novel 1,4-dihydropyridines. A new mechanism for positive inotropics or smooth muscle stimulants. Arzneim-Forsch/Drug Res 1983; 33:1268–1272.

    CAS  Google Scholar 

  89. Sanguinetti MC, Kass RS. Voltage-dependent block of calcium channel current in the calf cardiac purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res 1984; 55:336–348.

    PubMed  CAS  Google Scholar 

  90. Terada K, Nakao K, Okabe K, Kitamura K, Kuriyama H. Action of the 1,4-dihydropyridine derivative, KW-3049, on the smooth muscle membrane of the rabbit mesenteric artery. Br J Pharmacol 1987; 92:615–625.

    PubMed  CAS  Google Scholar 

  91. Sanguinetti MC, Kräfte DS, Kass RS. Voltage-dependent modulation of Ca channel current in heart cells by Bay K8644. J Gen Physiol 1986; 88:369–392.

    Article  PubMed  CAS  Google Scholar 

  92. Hamilton SL, Yatani A, Brush K, Schwartz A, Brown AM. A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol Pharmacol 1987; 31:221–231.

    PubMed  CAS  Google Scholar 

  93. Bechern M, Hebisch S, Schramm M. Ca2+ agonists: New, sensitive probes for Ca2+ channels. Trends Pharmacol Sei 1988; 9:257–261.

    Article  Google Scholar 

  94. Kunze DL, Hamilton SL, Hawkes MJ, Brown AM. Dihydropyridine binding and calcium channel function in clonal rat adrenal medullary tumor cells. Mol Pharmacol 1987; 31:401–409.

    PubMed  CAS  Google Scholar 

  95. Triggle DJ, Rampe D. 1,4-dihydropyridine activators and antagonists: Structural and functional distinctions. Trends Pharmacol Sei 1989; 10:507–511.

    Article  CAS  Google Scholar 

  96. Kokubun S, Prod’hom B, Becker C, Porzig H, Reuter H. Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol Pharmacol 1986; 30:571–584.

    CAS  Google Scholar 

  97. Ferrante J, Triggle DJ. Drug- and disease-induced regulation of voltage-depenent calcium channels. Pharmacol Rev 1990; 42:29–44.

    PubMed  CAS  Google Scholar 

  98. Ono H, Hashimoto K. In vitro tissue effects of calcium flux inhibition. In: Stone PH, Antman EM, eds. Calcium Channel Blocking Agents in the Treatment of Cardiovascular Disorders. Mount Kisco, NY: Futura Publishing; 1983:155–175.

    Google Scholar 

  99. Ning W, Wit AL. Comparison of the direct effects of nifedipine and verapamil on the electrical activity of the sinoatrial and atrioventricular nodes of the rabbit heart. Am Heart J 1983; 106:345–355.

    Article  PubMed  CAS  Google Scholar 

  100. Goto J, Sperelakis N. Depression of automaticity of the rabbit SA-node by bepredil and nifedipine. Eur J Pharmacol 1984; 99:227–231.

    Article  PubMed  CAS  Google Scholar 

  101. Taira N. Differences in cardiovascular profile among calcium antagonists. Am J Cardiol 1987; 59:24B–29B.

    Article  PubMed  CAS  Google Scholar 

  102. Wada Y, Satoh K, Taira N. Separation of the coronary vasodilator from cardiac effects of PN 200–110, a new dihydropyridine calcium antagonist, in the dog heart. J Cardiovasc Pharmacol 1985; 7:190–196.

    Article  PubMed  CAS  Google Scholar 

  103. Satoh K, Kawada M, Wada Y, Taira N. Cardiovascular actions of the dihydropyridine calcium antagonist nimodipine in the dog. Arzneim-Forsch/ Drug Res 1984; 34:563–568.

    CAS  Google Scholar 

  104. Lathrop DA, Valle-Aguilera JR, Millard RW, Gaum WE, Hannon DW, Francis PD, Nakaya H, Schwartz A. Comparative electrophysiologic and coronary hemodynamic effects of diltiazem, nisoldipine and verapamil on myocardial tissue. Am J Cardiol 1982; 49:613–620.

    Article  PubMed  CAS  Google Scholar 

  105. Henry PD. Comparative cardiac pharmacology of calcium blockers. In: Flaim SF, Zelis R, eds. Calcium Blockers: Mechanisms of action and clinical application. Munich: Urban & Schwarzenberg; 1982:135–153.

    Google Scholar 

  106. Schwinger RHG, Böhm M, Erdmann E. Negative inotropic properties of isradipine, nifedipine, diltiazem, and verapamil in diseased human myocardial tissue. J Cardiovasc Pharmacol 1990; 15:892–899.

    Article  PubMed  CAS  Google Scholar 

  107. Cauvin C, Loutzenhiser R, van Breemen C. Mechanisms of calcium antagonist-induced vasodilation. Ann Rev Pharmacol Toxicol 1983; 23:373–396.

    Article  CAS  Google Scholar 

  108. Hof RP, Salzmann R, Siegl H. Selective effects of PN 200–110 (Isradipine) on the peripheral circulation and the heart. Am J Cardiol 1987; 59:30B–36B.

    Article  PubMed  CAS  Google Scholar 

  109. Ljung B. Vascular selectivity of felodipine. Drugs 1985; 29 (suppl 2):46–58.

    Article  PubMed  Google Scholar 

  110. Struyker-Boudier HAJ, Smits JFM, De Mey JGR. The pharmacology of calcium antagonists: A review. J Cardiovasc Pharmacol 1990; 15(suppl 4):S1–S10.

    Article  PubMed  CAS  Google Scholar 

  111. Hess P, Lansman JB, Tsien RW. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 1984; 311:538–544.

    Article  PubMed  CAS  Google Scholar 

  112. Nakaya HA, Schwartz A, Millard RW. Reflex chronotropic and inotropic effects of calcium channel-blocking agents in conscious dogs. Diltiazem, verapamil and nifedipine compared. Circ Res 1983; 52:302–311.

    Google Scholar 

  113. Urquhart J, Patterson RE, Bacharach SL, Green MV, Speir EH, Aamodt R, Epstein SE. Comparative effects of verapamil, diltiazem, and nifedipine on hemodynamics and left ventricular function during acute myocardial ischemia in dogs. Circulation 1984; 69:382–390.

    Article  PubMed  CAS  Google Scholar 

  114. Quartaroli M, Gambini F, Tarter G, Micheli D, Trist DG, Gaviraghi G. The hemodynamic effects of lacidipine in anesthetized dogs: Comparison with nitrendipine, amlodipine, verapamil, and diltiazem. J Cardiovasc Pharmacol 1991; 18:326–336.

    Article  PubMed  CAS  Google Scholar 

  115. Roychowdhary AK, Gurtu S, Dhawan KN, Sinha JN, Gupta GP. Evidence for a central component in the cardiovascular effects of calcium channel blockers. J Cardiovasc Pharmacol 1991; 17:1015–1018.

    Article  PubMed  CAS  Google Scholar 

  116. Kulkarni SK, Shukla KV. Extracardiac actions of calcium channel blockers. Drugs 1988; 24:303–325.

    CAS  Google Scholar 

  117. Soward AL, Vanhaleweyk GLJ, Serruys PW. The haemodynamic effects of nifedipine, verapamil and diltiazem in patients with coronary artery disease. A review. Drugs 1986; 32:66–101.

    CAS  Google Scholar 

  118. Rowland E, Evans T, Krikler D. Effect of nifedipine on atrioventricular conduction as compared with verapamil. Intracardiac electrophysiologic study. Br Heart J 1979; 42:124–127.

    Article  CAS  Google Scholar 

  119. Mitchell LB, Schroeder JS, Mason JW. Comparative clinical electrophysiologic effects of diltiazem, verapamil and nifedipine. A review. Am J Cardiol 1982; 49:629–635.

    Article  CAS  Google Scholar 

  120. Sheridan DJ, Thomas P. Vascular versus myocardial selectivity of calcium antagonists. J Cardiovasc Pharmacol 1987; 10(suppl 1):S165–S168.

    Article  PubMed  Google Scholar 

  121. Bean BP. Nitrendipine block of cardiac calcium channels: High-affinity binding to the inactivated state. Proc Natl Acad Sei USA 1984; 81:6388–6392.

    Article  CAS  Google Scholar 

  122. Cognard C, Romey G, Galizzi J-P, Fosset M, Lazdunski M. Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: Electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200–110). Proc Natl Acad Sei USA 1986; 83:1518–1522.

    Article  CAS  Google Scholar 

  123. Terada K, Kitamura K, Kuriyama H. Blocking actions of Ca2+ antagonists on the Ca2+ channels in the smooth muscle cell membrane of rabbit small intestine. Pfluegers Arch 1987; 408:552–557.

    Article  CAS  Google Scholar 

  124. Dacquet C, Pacaud P, Loirand G, Mironneau C, Mironneau J. Comparison of binding affinities and calcium current inhibitory effects of a 1,4-dihydropyridine derivative (PN 200–110) in vascular smooth muscle. Biochem Biophys Res Commun 1988; 152:1165–1172.

    Article  PubMed  CAS  Google Scholar 

  125. Hering S, Beech DJ, Bolton TB, Lim SP. Action of nifedipine or BAY K8644 is dependent on calcium channel state in single smooth muscle cells from rabbit ear artery. Pfluegers Arch 1988; 411:590–592.

    Article  CAS  Google Scholar 

  126. Ganitkevich VY, Shuba MF, Smirnov SV. Potential-dependent calcium inward current in a single isolated smooth muscle cell of the guinea-pig taenia caeci. J Physiol 1986; 380:1–16.

    PubMed  Google Scholar 

  127. Beech DJ, MacKenzie I, Bolton TB, Christen MO. Effects of pinaverium on voltage-activated calcium channel currents of single smooth muscle cells isolated from the longitudinal muscle of the rabbit jejunum. Br J Pharmacol 1990; 99:374–378.

    PubMed  CAS  Google Scholar 

  128. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 1983; 301:569–574.

    Article  PubMed  CAS  Google Scholar 

  129. Lee KS, Tsien RW. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 1983; 302:790–794.

    Article  PubMed  CAS  Google Scholar 

  130. Hondeghem LM, Katzung BG. Antiarrhythmic agents: The modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Ann Rev Pharmacol Toxicol 1984; 24:387–423.

    Article  CAS  Google Scholar 

  131. Ehara T, Daufmann R. The voltage- and time-dependent effects of (—)-verapamil on the slow inward current in isolated cat ventricular myocardium. J Pharmacol Exp Ther 1978; 207:49–55.

    PubMed  CAS  Google Scholar 

  132. Pelzer D, Trautwein W, McDonald TF. Calcium channel block and recovery from block in mammalian ventricular muscle treated with organic channel inhibitors. Pfluegers Arch 1982; 394:97–105.

    Article  CAS  Google Scholar 

  133. Fox AP. Voltage-dependent inactivation of a calcium channel. Proc Natl Acad Sei USA 1981; 78:953–956.

    Article  CAS  Google Scholar 

  134. Fukushima Y, Hagiwara S. Voltage-gated Ca2+ channel in mouse myeloma cells. Proc Natl Acad Sei USA 1983; 80:2240–2242.

    Article  CAS  Google Scholar 

  135. Wibo M. Mode of action of calcium antagonists: voltage-dependence and kinetics of drug-receptor interaction. Pharmacol Toxicol 1989; 65:1–8.

    Article  PubMed  CAS  Google Scholar 

  136. Hille B. Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 1977; 69:497–515.

    Article  PubMed  CAS  Google Scholar 

  137. Cohen CJ, McCarthy RT. Nimodipine block of calcium channels in rat anterior pituitary cells. J Physiol 1987; 387:195–225.

    PubMed  CAS  Google Scholar 

  138. Godfraind T, Morel N, Wibo M. Modulation of the action of calcium antagonists in arteries. Blood Vessels 1990; 27:184–196.

    PubMed  CAS  Google Scholar 

  139. Yousif FB, Triggle DJ. Inhibitory actions of a series of Ca2+ channel antagonists against agonist and K+ depolarization induced responses in smooth muscle: An assessment of selectivity of action. Can J Physiol Pharmacol 1986; 64:273–283.

    Article  PubMed  CAS  Google Scholar 

  140. Jones AW. Vascular smooth muscle and alterations during hypertension. In: Bülbring E, Brading AF, Jones AW, Tomita T, eds. Smooth muscle: An assessment of current knowledge. London: E Arnold; 1981:379–429.

    Google Scholar 

  141. Vanhoutte PM. Vascular endothelium and Ca2+ antagonists. J Cardiovasc Pharmacol 1988; 12(suppl 6):S21–S28.

    Article  PubMed  CAS  Google Scholar 

  142. Sargent DF, Schwyzer R. Membrane lipid phase as catalyst for peptidereceptor interactions. Proc Natl Acad Sei USA 1986; 83:5774–5778.

    Article  CAS  Google Scholar 

  143. Bäuerle H-D, Seelig J. Interaction of charged and uncharged calcium channel antagonists with phospholipid membranes: Binding equilibrium, binding enthalpy, and membrane location. Biochemistry 1991; 30:7203–7211.

    Article  PubMed  Google Scholar 

  144. Nayler WG. Influx and efflux of calcium in the physiology of muscle contraction. Clin Orthoped Related Res 1966; 46:157–182.

    CAS  Google Scholar 

  145. Schwartz LM, McCleskey EW, Almers W. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 1985; 314:747–751.

    Article  PubMed  CAS  Google Scholar 

  146. Almers W, McCleskey EW. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J Physiol 1984; 353:585–608.

    PubMed  CAS  Google Scholar 

  147. Shimizu K, Ohta T, Toda N. Evidence for greater susceptibility of isolated dog cerebral arteries to Ca antagonists than peripheral arteries. Stroke 1980; 11:261–266.

    Article  PubMed  CAS  Google Scholar 

  148. Towart R. The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium-antagonistic dihydropyridines: An investigation of the mechanism of action of nimodipine. Circ Res 1981; 48:650–657.

    PubMed  CAS  Google Scholar 

  149. Uski TK, Andersson K-E. Effects of prostanoids on isolated feline cerebral arteries. II. Roles of extra- and intracellular calcium for the prostaglandin F-induced contraction. Acta Physiol Scand 1984; 120:197–205.

    Article  PubMed  CAS  Google Scholar 

  150. Uski TK, Andersson K-E, Brandt L, Ljunggren B. Characterization of the prostanoid receptors and of the contractile effects of prostaglandin F in human pial arteries. Acta Physiol Scand 1984; 121:369–378.

    Article  PubMed  CAS  Google Scholar 

  151. Cauvin C, Saida K, van Breemen C. Extracellular Ca2+ dependence and diltiazem inhibition of contraction in rabbit conduit arteries and mesenteric resistance vessels. Blood Vessels 1984; 21:23–31.

    PubMed  CAS  Google Scholar 

  152. Godfraind T, Morel N, Wibo M. Modulation of the action of calcium antagonists in arteries. Blood Vessels 1990; 27:184–196.

    PubMed  CAS  Google Scholar 

  153. Meisheri KD, Sage II GP, Cipkus-Dubray LA. Factors affecting rabbit mesenteric artery smooth muscle sensitivity to calcium antagonists. J Pharmacol Exp Ther 1990; 252:1167–1174.

    PubMed  CAS  Google Scholar 

  154. Glossmann H, Striessnig J. Structure and pharmacology of voltage-dependent calcium channels. In: ISI ed. Atlas of Science: Pharmacology. Philadelphia: ISI; 1988; 2:202–210.

    Google Scholar 

  155. McKenna E, Koch WJ, Slish DF, Schwartz A. Toward an understanding of the dihydropyridine-sensitive calcium channel. Biochem Pharmacol 1990; 39:1145–1150.

    Article  PubMed  CAS  Google Scholar 

  156. Bean BP, Sturek M, Puga A, Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res 1986; 59:229–235.

    PubMed  CAS  Google Scholar 

  157. Yatani A, Seidel CL, Allen J, Brown AM. Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ Res 1987; 60:523–533.

    PubMed  CAS  Google Scholar 

  158. Sperelakis N. Properties of calcium channels in cardiac muscle and vascular smooth muscle. Molec Cell Biochem 1990; 99:97–109.

    Article  PubMed  CAS  Google Scholar 

  159. Hoffman BF, Dangman KH. Mechanisms for cardiac arrhythmias. Experientia 1987; 43:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  160. Levy MN. Role of calcium in arrhythmogenesis. Circulation 1989; 80(suppl IV):23–30.

    Article  Google Scholar 

  161. Singh BN, Nademanee K. Use of calcium antagonists for cardiac arrhythmias. Am J Cardiol 1987; 59:153B–162B.

    Article  PubMed  CAS  Google Scholar 

  162. Akhtar M, Tchou P, Jazayeri M. Use of calcium channel entry blockers in the treatment of cardiac arrhythmias. Circulation 1989; 80(suppl IV):IV-31-IV-39.

    Google Scholar 

  163. Singh BN, Nademanee K, Baky S. Calcium antagonists: Uses in the treatment of cardiac arrhythmias. Drugs 1983; 25:125–164.

    Article  PubMed  CAS  Google Scholar 

  164. Ardissino D, Savonitti S, Mussini A, Zanini P, Rolla A, Barberis P, Sardina M, Specchia G. Felodipine (once daily) versus nifedipine (four times daily) for Prinzmetal’s angina pectoris. Am J Cardiol 1991; 68:1587–1592.

    Article  PubMed  CAS  Google Scholar 

  165. Krikler DM. Calcium antagonists for chronic stable angina pectoris. Am J Cardiol 1987; 59:95B–100B.

    Article  PubMed  CAS  Google Scholar 

  166. Stone PH. Calcium antagonists for Prinzmetal’s variant angina, unstable angina, and silent myocardial ischemia: Therapeutic tool and probe for identification of pathophysiologic mechanisms. Am J Cardiol 1987; 59:101B–115B.

    Article  PubMed  CAS  Google Scholar 

  167. Stone PH, Gibson RS, Glasser SP, DeWood MA, Parker JD, Kawanishi DT, Crawford MH, Messineo FC, Shook TL, Raby K, Curtis DG, Hoop RS, Young PM, Braunwald E, the ASIS Study Group. Comparison of propranolol, diltiazem, and nifedipine in the treatment of ambulatory ischemia in patients with stable angina: Differential effects on ambulatory ischemia, exercise performance, and anginal symptoms. Circulation 1990; 82:1962–1972.

    Article  PubMed  CAS  Google Scholar 

  168. Andersson K-E, Brandt L, Ljungren B. Spasm of cerebral and coronary vessels: effects of calcium antagonists. In: Refsum H, Sulg IA, Rasmussen K, eds. Heart & Brain, Brain & Heart. Berlin: Springer-Verlag; 1989: 3–19.

    Google Scholar 

  169. Harder DR, Belardinelli L, Sperelakis N, Rubio R, Berne RM. Differential effects of adenosine and nitroglycerin on the action potentials of large and small coronary arteries. Circ Res 1979; 44:176–182.

    PubMed  CAS  Google Scholar 

  170. Mekata F. Electrophysiological studies of the smooth muscle cell membrane of the dog coronary artery. J Physiol 1980; 298:205–212.

    PubMed  CAS  Google Scholar 

  171. Matsuda JJ, Volk KA, Shibata EF. Calcium currents in isolated rabbit coronary arterial smooth muscle myocytes. J Physiol 1990; 427:657–680.

    PubMed  CAS  Google Scholar 

  172. Ganitkevich VY, Isenberg G. Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery. J Physiol 1990; 426:19–42.

    PubMed  Google Scholar 

  173. Ginsburg R.The isolated human epicardial coronary artery. Am J Cardiol 1983; 52.-61A–66A.

    Article  PubMed  CAS  Google Scholar 

  174. Vedernikov YP. Mechanisms of coronary spasm of isolated human epicardial coronary segments excised 3 to 5 hours after sudden death. J Am Coll Cardiol 1986; 8:42A–49A.

    Article  PubMed  CAS  Google Scholar 

  175. Schwartz JS, Bache RJ. Pharmacologic vasodilators in the coronary circulation. Circulation 1987; 75(suppl 1): 162–167.

    Google Scholar 

  176. Bache RJ, Dymek DJ. Local and regional regulation of coronary vascular tone. Progr Cardiovasc Dis 1982; 24:191–212.

    Article  Google Scholar 

  177. Bache RJ, Tockman BA. Effect of nitroglycerin and nifedipine on subendocardial perfusion in the presence of a flow-limiting coronary stenosis in the awake dog. Circ Res. 1982; 50:678–687.

    PubMed  CAS  Google Scholar 

  178. Nayler WG. Calcium antagonists and the ischaemic myocardium. Int J Cardiol 1987; 15:267–285.

    Article  PubMed  CAS  Google Scholar 

  179. Nayler WG, Elz JS. Reperfusion injury: Laboratory artifact or clinical dilemma. Circulation 1986; 74:215–221.

    Article  PubMed  CAS  Google Scholar 

  180. Nayler WG. Basic mechanisms involved in the protection of the ischaemic myocardium. Role of calcium antagonists. Drugs 1991; 42(suppl 2):21–27.

    CAS  Google Scholar 

  181. Hano O, Silvermann HS, Blank PS, Mellits ED, Baumgardner R, Lakatta EG, Stern MD. Nicardipine prevents calcium loading and “oxygen paradox” in anoxic single rat myocytes by a mechanism independent of calcium channel blockade. Circ Res 1991; 69:1500–1505.

    PubMed  CAS  Google Scholar 

  182. Clusin WT, Buchbinder M, EllisAK, Kernoff KI, Giacomini JC, Harrison DC. Reduction of ischemic depolarization by the calcium channel blocker diltiazem. Correlation with improvement of ventricular conduction and early arrhythmias in the dog. Circ Res 1984; 54:10–20.

    PubMed  CAS  Google Scholar 

  183. Dillon JS, Nayler WG. [3H]Verapamil binding to rat cardiac sarcolemmal membrane fragments: An effect of ischaemia. Br J Pharmacol 1987; 90:99–109.

    PubMed  CAS  Google Scholar 

  184. Matucci R, Benardini F, Sciamarella ML, Baccaro C, Stenardi I, Franconi F, Giotti A. [3H]Nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart. Biochem Pharmacol 1987; 36:1059–1062.

    Article  PubMed  CAS  Google Scholar 

  185. Erbel R, Pop T, Meinertz T, Olshausen KV, Treese N, Henrichs KJ, Schuster CJ, Rupprecht HJ, Schlurmann W, Meyer J. Combination of calcium channel antagonist and thrombolytic therapy in acute myocardial infarction. Am Heart J 1988; 15:529–538.

    Article  Google Scholar 

  186. Ellis SG, Muller DW, Topoi EJ. Possible survival benefit from concomitant beta- but not calcium-antagonist therapy during reperfusion for acute myocardial infarction. Am J Cardiol 1990; 66:125–128.

    Article  PubMed  CAS  Google Scholar 

  187. Held PH, Yusuf S, Furberg CD. Calcium channel blockers in acute myocardial infarction and unstable angina: An overview. Br Med J 1989; 299:1187–1192.

    Article  CAS  Google Scholar 

  188. Persson S. Calcium antagonists in secondary prevention after myocardial infarction. Drugs 1991; 42(suppl 2):54–60.

    Article  PubMed  Google Scholar 

  189. Vaage-Nielsen M, Rasmussen V, Fisher Hansen J, Hagerup L, Borring Sørensen M, Pedersen Bjergard O, Mellemgaard K, Holländer NH, Nielsen I, Sigurd B, the Danish Verapamil Infarction Trial II Study Group. Effect of verapamil on ischaemia and ventricular arrhythmias after an acute myocardial infarction: Prognostic implications. J Cardiovasc Pharmacol 1991; 18(suppl 6):S26–S29.

    Google Scholar 

  190. Fischer Hansen J. Calcium antagonists and myocardial infarction. Cardiovasc Drug Ther 1991; 5:665–670.

    Google Scholar 

  191. Frishman WH, Stroh JA, Greenberg S, Suarez T, Karp A, Peled H. Calcium channel blockers in systemic hypertension. Med Clin N Am 1988; 72:449–499.

    PubMed  CAS  Google Scholar 

  192. Kiowski W, Bolli P, Erne P, Müller FB, Hulthén U, Bühler FR. Mechanism of action and clinical use of calcium antagonists in hypertension. Circulation 1989; 80(suppl IV):IV-136-IV-144.

    Google Scholar 

  193. Lederballe Pedersen O, Mikkelsen E, Andersson K-E. Effects of extracellular calcium on potassium and noradrenaline induced contractions in the aorta of spontaneously hypertensive rats—increased sensitivity to nifedipine. Acta Pharmacol Toxicol 1978; 43:137–144.

    Article  CAS  Google Scholar 

  194. van Breemen C, Cauvin C, Johns A, Leijten P, Yamamoto H. Ca2+ regulation of vascular smooth muscle. Fed Proc 1986; 45:2746–2751.

    PubMed  Google Scholar 

  195. Cauvin C, Hwang O, Yamamoto H, van Breemen C. Effect of dihydropyridines on tension and calcium-45 influx in isolated mesenteric resistance vessels from spontaneously hypertensive and normotensive rats. Am J Cardiol 1987; 59:116B–122B.

    Article  PubMed  CAS  Google Scholar 

  196. Chatelain P, Demol D, Roba J. Comparison of [3H] nitrendipine binding to heart membranes of normotensive and spontaneously hypertensive rats. J Cardiovasc Pharmacol 1984; 6:220–223.

    Article  PubMed  CAS  Google Scholar 

  197. Ishii K, Kano T, Ando J, Yoshida H. Binding of [3H] nitrendipine to cardiac and cerebral membranes from normotensive and spontaneously hypertensive rats. Eur J Pharmacol 1986; 123:271–278.

    Article  PubMed  CAS  Google Scholar 

  198. Packer M. Pathophysiological mechanisms underlying the adverse effects of calcium channel-blocking drugs in patients with chronic heart failure. Circulation 1989; 80(suppl IV):IV-59-IV-67.

    Google Scholar 

  199. Rouleau J-L, Chuck LHS, Hollosi G, Kidd P, Sievers RE, Wikman-Coffelt J, Parmley WW. Verapamil preserves myocardial contractility in the hereditary cardiomyopathy of the Syrian hamster. Circ Res 1979; 50:405–412.

    Google Scholar 

  200. Wagner JA, Reynolds IJ, Weisman HF, Dudeck P, Weisfeldt ML, Snyder SH. Calcium antagonist receptors in cardiomyopathic hamster: Selective increases in heart, muscle, brain. Science 1986; 232:515–517.

    Article  PubMed  CAS  Google Scholar 

  201. Wagner JA, Sax FL, Weisman HF, Porterfield J, Mcintosh C, Weisfeldt ML, Snyder SH, Epstein SE. Calcium-antagonist receptors in the atrial tissue of patients with hypertrophic cardiomyopathy. N Engl J Med 1989; 320:755–761

    Article  PubMed  CAS  Google Scholar 

  202. Rasmussen RP, Minobe W, Bristow MR. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol 1990; 39:691–696.

    Article  PubMed  CAS  Google Scholar 

  203. Elkayam U, Amin J, Mehra A, Vasquez J, Weber L, Rahimtoola SH. A prospective, randomized, double-blind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure. Circulation 1990; 82:1954–1961.

    Article  PubMed  CAS  Google Scholar 

  204. Packer M. Calcium channel blockers in chronic heart failure. The risks of “physiologically rational” therapy. Circulation 1990; 82:2254–2257.

    Article  PubMed  CAS  Google Scholar 

  205. Reicher-Reiss H, Barasch E. Calcium antagonists in patients with heart failure. A review. Drugs 1991; 42:343–364.

    CAS  Google Scholar 

  206. Henry PD. Anti-atherogenic effects of calcium channel blockers: Possible mechanisms of action. Cardiovasc Drug Ther 1990; 4(suppl 5): 1015–1020.

    Article  Google Scholar 

  207. Gottlieb SO, Brinker JA, Mellits D. Effect of nifedipine on the development of coronary bypass graft stenoses in high-risk patients: A randomized, double-blind, placebo-controlled trial. Circulation 1989; 80:11–228.

    Google Scholar 

  208. Loaldi A, Polese A, Montorsi P. Comparison of nifedipine, propranolol and isosorbide dinitrate on angiographic progression and regression of coronary arterial narrowing in angina pectoris. Am J Cardiol 1989; 64:433–439.

    Article  PubMed  CAS  Google Scholar 

  209. Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, Deckers JW. Retardation of angiographic progression of coronary artery disease by nifedipine: Results of International Nifedipine Trial on Anti-atherosclerotic Therapy (INTACT). Lancet 1990; 335:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  210. Waters D, Lesperance J, Francetich M, Causey D, Theroux P, Chiang YK, Hudon G, Lemarbre L, Reitman M, Joyal M, Gosselin G, Dyrda I, Macer J, Havel RJ. A controlled clinical trial to assess the effect of a calcium channel blocker upon the progression of coronary atherosclerosis. Circulation 1990; 82:1940–1953.

    Article  PubMed  CAS  Google Scholar 

  211. Schmitz G, Hankowitz J, Kovacs EM. Cellular processes in atherogenesis: Potential targets of Ca2+ channel blockers. Atherosclerosis 1991; 88:109–132.

    Article  PubMed  CAS  Google Scholar 

  212. Schmitz G, Hankowitz J, Brennhausen B, Schmutte C. Der Einfluss von Calcium-Antagonisten auf den zellulären Lipidstoffwechsel. Arzneim-Forsch/Drug Res 1990; 40:366–372.

    CAS  Google Scholar 

  213. Langley MS, Sorkin EM. Nimodipine: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs 1989; 37:669–699.

    Article  PubMed  CAS  Google Scholar 

  214. Germano IM, Bartkowski HM, Cassel ME, Pitts LH. The therapeutic value of nimodipine in experimental focal cerebral ischemia: Neurological outcome and histopathological findings. J Neurosurg 1987; 67:81–87.

    Article  PubMed  CAS  Google Scholar 

  215. Fujisawa A, Matsumoto M, Matsuyama T, Ueda H, Wanaka A, Yoneda S, Kimura K, Kamada T. The effect of the calcium antagonist nimodipine on the gerbil model of experimental cerebral ischemia. Stroke 1986; 17:748–752.

    Article  PubMed  CAS  Google Scholar 

  216. Steen PA, Gisvold SE, Milde JH, Newberg LA, Scheithauer BW, Lanier WL, Michenfelder JD. Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 1985; 62:406–414.

    Article  PubMed  CAS  Google Scholar 

  217. Lazarewicz JW, Pluta R, Salinska E, Puka M. Beneficial effect of nimodipine on metabolic and functional disturbances in rabbit hippocampus following complete cerebral ischemia. Stroke 1989; 20:70–77.

    Article  PubMed  CAS  Google Scholar 

  218. Grotta, JC. Clinical aspects of the use of calcium antagonists in cerebrovascular disease. Clin Neuropharmacol 1991; 14:373–390.

    Article  PubMed  CAS  Google Scholar 

  219. Ljunggren B, Brandt L, Säveland H, Nilsson P-E, Cronqvist S, Andersson K-E, Vinge E. Outcome in 60 consecutive patients treated with early aneurysm operation and intravenous nimodipine. J Neurosurg 1984; 61:864–873.

    Article  PubMed  CAS  Google Scholar 

  220. Petruk KC, West M, Mohr G, Weir BKA, Benoit BG, Gentiii F, Disney LB, Khan MI, Grace M, Holness RO, Karwon MS, Ford RM, Cameron GS, Tucker WS, Purves GB, Miller JDR, Hunter KM, Richard MT, Durity FA, Chan R, Clein LJ, Maroun FB, Godon A. Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J Neurosurg 1988; 68:505–517.

    Article  PubMed  CAS  Google Scholar 

  221. Auer LM, Oberbauer RW, Schalk HV. Human pial vascular reactions to intravenous nimodipine-infusion during EC-IC bypass surgery. Stroke 1983; 14:210–213.

    Article  PubMed  CAS  Google Scholar 

  222. Gelmers HJ. Effect of nimodipine (Bay e 9736) on postischaemic cerebrovascular reactivity, as revealed by measuring regional cerebral blood flow (rCBF). Acta Neurochir 1982; 63:283–290.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Uski, T.K., HÖgestÄtt, E.D., Andersson, KE. (1994). Clinical Pharmacology of Calcium Channels. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics