Skip to main content

Roles of Selenium in Type I Iodothyronine 5’-Deiodinase and in Thyroid Hormone and Iodine Metabolism

  • Chapter
Selenium in Biology and Human Health

Abstract

A biological function of selenium was first recognized when it was shown to be an essential component of factor 3, which prevented liver necrosis in rats that were also vitamin E—deficient (1). Subsequently, selenium deficiency was shown to cause several diseases in other animals, usually associated with concurrent vitamin E deficiency (2). Although some conditions that responded to selenium or vitamin E supplementation were thought to be caused by tissue fat oxidation, the biochemical basis of the involvement of selenium with vitamin E was not understood until Rotruck et al. demonstrated that selenium was essential for glutathione peroxidase activity (3). Thereafter Hoekstra proposed a scheme to explain the interaction between vitamin E in the cell membrane and selenium-containing glutathione peroxidase in the cell cytoplasm (4). Glutathione peroxidase was suggested to act in the cell cytoplasm, metabolizing a range of peroxides that were sources of free radicals, while vitamin E acted in the cell membrane as a free-radical scavenger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwarz, K, Foltz, CM. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292 – 3293; 1957.

    Article  CAS  Google Scholar 

  2. Combs, GF, Combs, SB. The Role of Selenium in Nutrition. New York:Academic Press; 1986.

    Google Scholar 

  3. Rotruck, JT, Pope, AL, Ganther, HE, Swanson, AB, Hafeman, DG, Hoekstra, WG. Selenium:biochemical role as a component of glutathione peroxidase. Science 179:588 – 590; 1973.

    Article  PubMed  CAS  Google Scholar 

  4. Hoekstra, WG. Biochemical function of selenium and its relation to vitamin E. Fed Proc 34:2083 – 2089; 1975.

    CAS  Google Scholar 

  5. Takahashi, K, Avissar, N, Whitin, JC, Cohen, HJ. Purification and characterization of human plasma glutathione peroxidase:a selenoglyco- protein distinct from the known cellular enzyme. Arch Biochem Biophys 256:677 – 686; 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Avissar, N, Whitin, JC, Allen, PZ, Wagner, DD, Liegey, P, Cohen, HJ. Plasma selenium-dependent glutathione peroxidase—cell of origin and secretion. J Biol Chem 264:15850 - 15855; 1989.

    PubMed  CAS  Google Scholar 

  7. Sunde, RA. Molecular biology of selenoproteins. Ann Rev Nutr 10:451 - 474; 1990.

    Article  CAS  Google Scholar 

  8. Ursini, F, Maiorino, M, Gregolin, C. The seleno-enzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839:62- 70; 1985.

    Google Scholar 

  9. Zhang, LP, Maiorino, M, Roveri, A, Ursini, F. Phospholipid hydroperoxide glutathione peroxidase—specific activity in tissues of rats of different age and comparison with other glutathione peroxidases. Biochim Biophys Acta 1006:140 - 143; 1989.

    PubMed  CAS  Google Scholar 

  10. Weitzel, F, Ursini, F, Wendel, A. Phospholipid hydroperoxide glutathione peroxidase in various mouse organs during selenium deficiency and repletion. Biochim Biophys Acta 1036:88 - 94; 1990.

    PubMed  CAS  Google Scholar 

  11. Burk, RF. Biological activity of selenium. Ann Rev Nutr 3:53 – 70; 1983.

    Article  CAS  Google Scholar 

  12. Arthur, JR, Nicol, F, Boyne, R, Allen, KGD, Hayes, JD, Beckett, GJ. Old and new roles for selenium. In:Hemphill, DD ed. Trace Substances in environmental Health XXI. Columbia, MD, University of Missouri Press; 1987, pp 487 - 498.

    Google Scholar 

  13. Arthur, JR, Morrice, PC, Nicol, F, Beddows, SE, Boyd, R, Hayes, JD, Beckett, GJ. The effects of selenium and copper deficiencies on glutathione S-transferase and glutathione peroxidase in rat liver. Biochem J 248:539 - 544; 1987.

    PubMed  CAS  Google Scholar 

  14. Reiter, R, Wendel, A. Selenium and drug metabolism. II. Independence of glutathione peroxidase and reversibility of hepatic enzyme modulations in deficient mice. Biochem Pharmacol 33:1923 - 1928; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Hill, KE, Burk, RF, Lane, JM. Effect of selenium depletion and repletion on plasma glutathione and glutathione dependent enzymes in the rat. J Nutr 117:99 - 104; 1987.

    PubMed  CAS  Google Scholar 

  16. Burk, RF. Recent developments in trace element metabolism and function:newer roles of selenium in nutrition. J Nutr 119:1051 - 1054; 1989.

    PubMed  CAS  Google Scholar 

  17. Leonard, JL, Visser, TJ. Biochemistry of deiodination. In:Hennemann, G, ed. Thyroid Hormone Metabolism. New York:Marcel Dekker; 1986, pp. 189 - 222.

    Google Scholar 

  18. Hennemann, G. Thyroid hormone deiodination in healthy man. In:Hennemann, G, ed. Thyroid Hormone Metabolism. New York:Marcel Dekker; 1986, pp. 277 - 295.

    Google Scholar 

  19. Taurog, AG. Hormone synthesis:Thyroid iodine metabolism. In:Braverman, LE, Utiger, RD, eds. Werner and Ingbar’s The Thyroid. New York:JB Lippincott; 1992, pp. 51 - 98.

    Google Scholar 

  20. Toft, AD. Thyrotropin:Assay, secretory physiology and testing of regulation. In:Braverman, LE, Utiger, RD, eds. Werner and Ingbar’s The Thyroid. New York:JB Lippincott; 1992, pp. 287 - 305.

    Google Scholar 

  21. Berry, MJ, Banu, L, Larsen, PR. Type-I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438—440; 1991.

    Google Scholar 

  22. Silva, JE, Larsen, PR. Regulation of thyroid hormone expression at the pre-receptor and receptor levels. In:Hennemann, G, ed. Thyroid Hormone Metabolism. New York:Marcel Dekker; 1986, pp 441 - 500.

    Google Scholar 

  23. Silva, JE, Larsen, PR. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature 305:712—713; 1983.

    Google Scholar 

  24. Safran, M, Farwell, AP, Leonard, JL. Evidence that type II 5’- deiodinase is not a selenoprotein. J Biol Chem 266:13477 - 13480; 1991.

    PubMed  CAS  Google Scholar 

  25. Beckett, GJ, MacDougall, DA, Nicol, F, Arthur, JR. Inhibition of type I and type II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency. Biochem J 259:887—892; 1989.

    Google Scholar 

  26. Mol, JA, Van Den Berg, TP, Visser, TJ. Partial purification of the rat liver iodothyronine deiodinase I. Solubilization and ion-exchange chro¬matography. Mol Cell Endocrinol 55:149 - 157; 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Beckett, GJ, Beddows, SE, Morrice, PC, Nicol, F, Arthur, JR. Inhibition of hepatic deiodination of thyroxine caused by selenium deficiency in rats. Biochem J 248:443 - 447; 1987.

    PubMed  CAS  Google Scholar 

  28. Arthur, JR, Nicol, F, Hutchinson, AR, Beckett, GJ. The effects of selenium depletion and repletion on the metabolism of thyroid hormones in the rat. J Inorg Biochem 39:101 - 108; 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Boada, RJ, Campbell, DA, Chopra, IJ. Nucleotide sequence of rat liver iodothyronine 5-monodeiodinase (5 MD):its identity with protein disulphide isomerase. Biochem Biophys Res Commun 155:1297—1304; 1988.

    Google Scholar 

  30. Schoenmakers, RB, Pigmans, IGAJ, Hawkins, HC, Freedman, RB, Visser, TJ. Rat liver type I iodothyronine deiodinase is not identical to protein disulfide isomerase. Biochem Biophys Res Commun 162:857- 868; 1989.

    Google Scholar 

  31. Arthur, JR, Nicol, F, Grant, E, Beckett, GJ. The effects of selenium deficiency on hepatic type-I iodothyronine deiodinase and protein disulphide-isomerase assessed by activity measurements and affinity labelling. Biochem J 274:297 - 300; 1991.

    PubMed  CAS  Google Scholar 

  32. Arthur, JR, Nicol, F, Beckett, GJ. Hepatic iodothyronine deiodinase:the role of selenium. Biochem J 272:537 - 540; 1990.

    PubMed  CAS  Google Scholar 

  33. Behne, D, Kyriakopoulos, A, Meinhold, H, Köhrle, J. Identification of type-I iodothyronine 5-deiodinase as a selenoenzyme. Biochem Biophys Res Commun 173:1143 - 1149; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Berry, MJ, Banu, L, Chen, Y, Mandel, SJ, Kieffer, JD, Harney, JW, Larsen, PR. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature 353:273 - 276; 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Köhrle, J. Thyrotropin (TSH) action on thyroid hormone deiodination and secretion. One aspect of thyrotropin regulation of thyroid cell biology. Horm Metab Res (Suppl) 23:18 - 28; 1990.

    Google Scholar 

  36. Ollis, CA, Fowles, A, Brown, BL, Munro, DS, Tomlinson, S. Human thyroid cells in monolayer retain the ability to secrete triiodothyronine in response to thyrotropin. J Endocrinol 104:285—290; 1985.

    Google Scholar 

  37. Beech, S, Walker, SW, Arthur, JR, Dorrance, A, Nicol, F, Beckett, GJ. The effect of selenium deficiency on iodothyronine deiodinase in cultured human thyrocytes and rat thyroid homogenates. J Endocrinol (Suppl) 132:81; 1992.

    Google Scholar 

  38. Behne, D, Hilmert, H, Scheid, S, Gessner, H, Elger, W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta 966:12 - 21; 1988.

    PubMed  CAS  Google Scholar 

  39. Arthur, JR. The role of selenium in thyroid hormone metabolism. Can J Physiol Pharmacol 69:1648 - 1652; 1991.

    Article  PubMed  CAS  Google Scholar 

  40. Berry, MJ, Kieffer, JD, Harney, JW, Larsen, PR. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J Biol Chem 266:14155 - 14158; 1991.

    PubMed  CAS  Google Scholar 

  41. Berry, MJ, Kieffer, JD, Larsen, PR. Evidence that cysteine not seleno-cysteine is at the catalytic site of type II iodothyronine deiodinase. Endocrinology 129:550 - 552; 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Chanoine, JP, Safran, M, Farwell, AP, Tranter, P, Ekenbarger, D, Dubord, S, Alex, S, Stone, S, Arthur, JR, Beckett, GJ, Braverman, LE, Leonard, JL. Selenium deficiency and type II 5’-deiodinase regulation in the euthyroid and hypothyroid rat:evidence of a direct effect of thyroxine. Endocrinology 131:479 - 484; 1992.

    Article  PubMed  CAS  Google Scholar 

  43. Arthur, JR, Morrice, PC, Beckett, GJ. Thyroid hormone concentrations in selenium-deficient and selenium-sufficient cattle. Res Vet Sci 46:226 - 230; 1988.

    Google Scholar 

  44. Arthur, JR, Nicol, F, Rae, PWH, Beckett, GJ. Effects of selenium deficiency on the thyroid gland and on plasma and pituitary thyrotropin and growth hormone concentrations in the rat. Clin Chem Enzyme Commun. 3:209 - 214; 1990.

    Google Scholar 

  45. Beckett, GJ, Russell, A, Nicol, F, Sahu, P, Wolf, CR, Arthur, JR. Effect of selenium deficiency on hepatic type I 5-iodothyronine deiodinase activity and hepatic thyroid hormone levels in the rat. Biochem J 282:483 - 486; 1992.

    PubMed  CAS  Google Scholar 

  46. Beckett, GJ, Nicol, F, Rae, PWH, Beech, S, Guo, Y, Arthur, JR. Effects of combined iodine and selenium deficiency on thyroid hormone metabolism in the rat. Am J Clin Nutr (Suppl) 57:2405 - 2435; 1993.

    Google Scholar 

  47. Hetzel, BS, Mano, MT. A review of experimental studies of iodine deficiency during fetal development. J Nutr 119:145—151; 1989.

    Google Scholar 

  48. Silva, JE. The responses of the body to iodine deficiency and hypothyroxinaemia:a source of variability in the clinical presentation of endemic goitre and cretinism. In:Medeiros-Neto, G, Maciel, RMB, Halpern, A, eds. Iodine Deficiency Disorders and Congenital Hypo¬thyroidism. Sao Paulo:Ach; 1985 pp. 80 - 88.

    Google Scholar 

  49. Goyens, P, Golstein, J, Nsombola, B, Vis, H, Dumont, JE. Selenium deficiency as a possible factor in the pathogenesis of myxoedematous cretinism. Acta Endocrinol 114:497 - 502; 1987.

    PubMed  CAS  Google Scholar 

  50. Arthur, JR, Nicol, F, Rae, PWH, Beckett, GJ. Effects of combined selenium and iodine deficiencies on the thyroid gland of the rat. J Endocrinol (Suppl) 124:240; 1990.

    Google Scholar 

  51. Vanderpas, JB, Contempre, B, Duale, NL, Goossens, W, Bebe, N, Thorpe, R, Ntambue, K, Dumont, J, Thilly, CH, Diplock, AT. Iodine and selenium deficiency associated with cretinism in Northern Zaire. Am J Clin Nutr 52:1087 - 1093; 1990.

    PubMed  CAS  Google Scholar 

  52. Contempre, B, Dumont, JE, Ngo, B, Thilly, CH, Diplock, AT, Vanderpas, J. Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area:the possible danger of indiscriminate supplementation of iodine-deficient subjects with selenium. J Clin Endocrinol Metab 73:213 - 215; 1991.

    Article  PubMed  CAS  Google Scholar 

  53. Chanoine, J-P, Safran, M, Farwell, AP, Dubord, S, Alex, S, Stone, S, Arthur, JR, Braverman, LE, Leonard, JL. Effects of selenium deficiency on thyroid hormone economy in rats. Endocrinology 131:1787—1792; 1992.

    Google Scholar 

  54. Beckett, GJ, Nicol, F, Proudfoot, D, Dyson, K, Loucaides, G, Arthur, JR. The changes in hepatic enzyme expression caused by selenium deficiency and hypothyroidism in rats are caused by independent mechanisms. Biochem J 266:743 - 747; 1990.

    PubMed  CAS  Google Scholar 

  55. Koenig, RJ, Brent, GA, Warne, RL, Larsen, PR, Moore, DD. Thyroid hormone receptor binds to a site in the rat growth hormone promotor required for induction by thyroid hormone. Proc Natl Acad Sci USA 84:5670 – 5674; 1987.

    Article  PubMed  CAS  Google Scholar 

  56. Ewan, RC. Effect of selenium on rat growth, growth hormone and diet utilization. J Nutr 106:702 – 709; 1976.

    PubMed  CAS  Google Scholar 

  57. Golstein, J, Corvilain, B, Lamy, F, Paquer, D, Dumont, JE. Effects of a selenium deficient diet on thyroid function of normal and perchlorate treated rats. Acta Endocrinol 118:495 – 502; 1988.

    PubMed  CAS  Google Scholar 

  58. Arthur, JR, Nicol, F, Beckett, GJ, Trayhurn, P. Impairment of iodothyronine 5’-deiodinase activity in brown adipose tissue and its acute stimulation by cold in selenium deficiency. Can J Physiol Pharmacol 69:782 – 785; 1991.

    Article  PubMed  CAS  Google Scholar 

  59. Geloen, A, Arthur, JR, Beckett, GJ, Trayhurn, P. Effect of selenium and iodine deficiency on the level of uncoupling protein in brown adipose tissue of rats. Biochem Soc Trans 18:1269–1270; 1990.

    Google Scholar 

  60. Beckett, GJ, Peterson, FE, Choudhury, K, Rae, PWH, Nicol, F, Wu, PS-C, Toft, AD, Smith, AF, Arthur, JR. Inter-relationships between selenium and thyroid hormone metabolism in rat and man. Trace Elem Elect Health Dis 5:265 – 267; 1992.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York

About this chapter

Cite this chapter

Arthur, J.R., Beckett, G.J. (1994). Roles of Selenium in Type I Iodothyronine 5’-Deiodinase and in Thyroid Hormone and Iodine Metabolism. In: Burk, R.F. (eds) Selenium in Biology and Human Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2592-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2592-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7597-8

  • Online ISBN: 978-1-4612-2592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics