Skip to main content

Intracellular Glutathione Peroxidases — Structure, Regulation, and Function

  • Chapter
Selenium in Biology and Human Health

Abstract

Glutathione peroxidase (glutathione:H202 oxidoreductase E.C. 1.11.1.9) was discovered by Mills (1) in 1957 in his search for the factors that function in the protection of erythrocytes against oxidative hemolysis. Similarly, John Rotruck, working in Professor Hoekstra’s laboratory, focused on GPX in his search for an enzymatic function that made selenium (Se) an antioxidant (2). The unraveling of the Se/GPX story has fascinated a generation of scientists, and it has led to the use of GPX activity as one of the best indicators of Se status as well as to its use as the index of choice for the determination of Se requirements. The form of Se in GPX and the mechanism of Se insertion into the enzyme have become, together, an academic subject matter of their own; the study of this enzyme has now moved into the exciting world of molecular biology, and these investigations are helping us learn much more about the regulation of GPX and Se. This research suggests that the important function of classical GPX in some tissues is to regulate Se metabolism and Se flux to selenoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mills, GC. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative break-down. J Biol Chem 229:189 – 197; 1957.

    PubMed  CAS  Google Scholar 

  2. Rotruck, JT, Pope, AL, Ganther, HE, Swanson, AB, Hafeman, DG, Hoekstra, WG. Selenium:biochemical role as a component of glutathione peroxidase. Science 179:588 – 590; 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Wendel, A. Selenium in Biology and Medicine. Heidelberg:Springer- Verlag; 1989.

    Google Scholar 

  4. Sunde, RA, Hoekstra, WG. Structure, synthesis and function of glutathione peroxidase. Nutr Rev 38:265 – 273; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Sunde, RA. The biochemistry of selenoproteins. J Am Oil Chem Soc 61:1891–1990; 1984.

    Article  CAS  Google Scholar 

  6. Sunde, RA. Molecular biology of selenoproteins. Annu Rev Nutr 10:451 - 474; 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Stadtman, TC. Selenium biochemistry. Annu Rev Biochem 59:111—127; 1990.

    Google Scholar 

  8. Böck, A, Forchhammer, K, Heider, J, Leinfelder, W, Sawers, G, Veprek, B, Zinoni, F. Selenocysteine:the 21st amino acid. Mol Microb 5:515 - 520; 1991.

    Article  Google Scholar 

  9. Burk, RF. Molecular biology of selenium with implications for its metabolism. FASEB J 5:2274 - 2279; 1991.

    PubMed  CAS  Google Scholar 

  10. Ursini, F, Maiorino, M, Gregolin, C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839:62— 70; 1985.

    PubMed  CAS  Google Scholar 

  11. Mills, GC. The purification and properties of glutathione peroxidase of erythrocytes. J Biol Chem 234:502 - 506; 1959.

    PubMed  CAS  Google Scholar 

  12. Little, C, O’Brien, PJ. An intracellular GSH peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun 31:145 - 150; 1968.

    Article  PubMed  CAS  Google Scholar 

  13. Flohé, L, Loschen, G, Gönzler, WA, Eichole, E. Glutathione peroxidase. V. The kinetic mechanism. Hoppe-Seyler’s Z. Physiol Chem 353:987 - 999; 1972.

    Google Scholar 

  14. Günzler, WA, Vergin, H, Müller, I, Flohé, L. Glutathion-peroxidase VI die Reaktion der Glutathion-peroxidase mit verschiedenen Hydro-peroxides Hoppe-Seyler’s Z. Physiol Chem 353:1001 - 1004; 1972.

    Google Scholar 

  15. Epp, O, Ladenstein, R, Wendel, A. The refined structure of the seleno- enzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 133:51 - 69; 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Chambers, I, Frampton, J, Goldfarb, P, Affara, N, McBain, W, Harrison, PR. The structure of the mouse glutathione peroxidase gene:the selenocysteine in the active site is encoded by the “termination” codon, TGA. EMBO J 5:1221 - 1227; 1986.

    PubMed  CAS  Google Scholar 

  17. Ghyselinck, NB, Jimenez, C, Dufaure, JP. Sequence homology of androgen-regulated epididymal proteins with glutathione peroxidase in mice. J Reprod Fertil 93:461 - 466; 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Perry, CF, Jones, R, Niang, LSP, Jackson, RM, Hall, L. Genetic evidence for an androgen-regulated epididymal secretory glutathione peroxidase whose transcript does not contain a selenocysteine codon. Biochem J 285:863 - 870; 1992.

    PubMed  CAS  Google Scholar 

  19. Criqui, MC, Jamet, E, Parmentier, Y, Marbach, J, Durr, A, Fleck, J. Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Mol Biol 18:623—627; 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Williams, DL, Pierce, RJ, Cookson, E, Capron, A. Molecular cloning and sequencing of glutathione peroxidase from Schistosoma mansoni. Mol Biochem Parasitol 52:127 - 130; 1991.

    Article  Google Scholar 

  21. Shigeoka, S, Takeda, T, Hanaoka, T. Characterization and immuno-logical properties of selenium-containing glutathione peroxidase induced by selenite in Chlamydomonas reinhardtii. Biochem J 275:623 - 627; 1991.

    PubMed  CAS  Google Scholar 

  22. Overbaugh, JM, Fall, R. Characterization of a selenium-independent glutathione peroxidase from Euglena gracilis. Plant Physiol 77:437- 442; 1985.

    Article  PubMed  CAS  Google Scholar 

  23. Akasaka, M, Mizoguchi, J, Takahashi, K. A human cDNA sequence for a novel glutathione peroxidase-related protein. Nucleic Acids Res 18:4619; 1990.

    PubMed  CAS  Google Scholar 

  24. Chu, FF, Doroshow, JH, Esworthy, RS. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSH-Px-GI. J Biol Chem 268:2571 - 2576; 1993.

    PubMed  CAS  Google Scholar 

  25. McBride, OW, Mitchell, A, Lee, BJ, Mullenbach, G, Hatfield, D. Gene for selenium-dependent glutathione peroxidase maps to human chromosomes 3, 21 and X. Biofactors 1:285 - 292; 1988.

    PubMed  CAS  Google Scholar 

  26. Mitchell, A, Bale, AE, Lee, BJ, Hatfield, D, Harley, H, Rundle, SA, Fan, YS, Fukushima, Y, Shows, TB, McBride, OW. Regional localization of the selenocysteine tRNA gene (TRSP) on human chromosome 19. Cytogenet Cell Genet 61:117 - 120; 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Moscow, JA, Morrow, CS, He, R, Mullenbach, GT, Cowan, KH. Structure and function of the 5’-flanking sequence of the human cytosolic selenium-dependent glutathione peroxidase gene (hgpxl). J Biol Chem 267:5949 - 5958; 1992.

    PubMed  CAS  Google Scholar 

  28. Ho, Y-S, Howard, AJ. Cloning and characterization of the rat glutathione peroxidase gene. FEBS Lett 301:5 - 9; 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Sunde, RA, Hoekstra, WG. Incorporation of selenium from selenite and selenocystine into glutathione peroxidase in the isolated perfused rat liver. Biochem Biophys Res Commun 93:1181 - 1188; 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Sunde, RA, Evenson, JK. Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J Biol Chem 262:933—937; 1987.

    PubMed  CAS  Google Scholar 

  31. Hatfield, D, Diamond, A, Dudock, B. Opal suppressor serine tRNA from bovine liver form phosphoseryl-tRNA. Proc Natl Acad Sci USA 79:6215 - 6219; 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Hatfield, D, Lee, BJ, Hampton, L, Diamond, AM. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucleic Acids Res 19:939 - 943; 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Ehrenreich, A, Forchhammer, K, Tormay, P, Veprek, B, Böck, A. Selenoprotein synthesis in E-Coli—purification and characterisation of the enzyme catalysing selenium activation. Eur J Biochem 206:767— 773; 1992.

    Google Scholar 

  34. Veres, Z, Tsai, L, Scholz, TD, Politino, M, Balaban, RS, Stadtman, TC. Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs:31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc Natl Acad Sci USA 89:2975 – 2979; 1992.

    Article  PubMed  CAS  Google Scholar 

  35. Kim, IY, Veres, Z, Stadtman, TC. Escherichia coli mutant SELD enzymes. J Biol Chem 267:19650 - 19654; 1992.

    PubMed  CAS  Google Scholar 

  36. Leinfelder, W, Zehelein, E, Mandrand-Berthelot, M-A, Böck, A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331:723 - 725; 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Forchhammer, K, Leinfelder, W, Boesmiller, K, Veprek, B, Böck, A. Selenocysteine synthase from Escherichia coli:nucleotide sequence of the gene (selA) and purification of the protein. J Biol Chem 266:6318 - 6323; 1991.

    PubMed  CAS  Google Scholar 

  38. Forchhammer, K, Böck, A. Selenocysteine synthase from Escherichia coli:analysis of the reaction sequence. J Biol Chem 266:6324—6328; 1991

    PubMed  CAS  Google Scholar 

  39. Heider, J, Baron, C, Böck, A. Coding from a distance:dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J 11:3759 - 3766; 1992.

    PubMed  CAS  Google Scholar 

  40. Mizutani, T, Kurata, H, Yamada, K, Totsuka, T. Some properties of murine selenocysteine synthase. Biochem J 284:827—834; 1992.

    PubMed  CAS  Google Scholar 

  41. Berry, MJ, Banu, L, Chen, Y, Mandel, SJ, Kieffer, JD, Harney, JW, Larsen, PR. Recognition of a UGA as a selenocysteine codon in Type I deiodinase requires sequences in the 3’ untranslated region. Nature 353:273 - 276; 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Hill, KE, Lloyd, RS, Burk, RF. Conserved nucleotide sequences in the open reading frame and 3’ untranslated region of selenoprotein P mRNA. Proc Natl Acad Sci USA 90:537 - 541; 1993.

    Article  PubMed  CAS  Google Scholar 

  43. Hafeman, DG, Sunde, RA, Hoekstra, WG. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580 - 587; 1974.

    PubMed  CAS  Google Scholar 

  44. Sunde, RA, Saedi, MS, Knight, SAB, Smith, CG, Evenson, JK. Regulation of expression of glutathione peroxidase by selenium. In:Wendel, A, ed. Selenium in Biology and Medicine. Heidelberg:Springer-Verlag; 1989, pp 8–13.

    Google Scholar 

  45. Selenium in Nutrition. Washington, DC. National Academy of Science; 1983.

    Google Scholar 

  46. Knight, SAB, Sunde, RA. The effect of progressive selenium deficiency on anti-glutathione peroxidase antibody reactive protein in rat liver. J Nutr 117:732 - 738; 1987.

    PubMed  CAS  Google Scholar 

  47. Sunde, RA, Schwartz, JK, Johnson, AW, Foley, NF. Glutathione peroxidase mRNA levels in selenium-deficient, Se-adequate and high- selenium rats. FASEB J 5:A714; 1991.

    Google Scholar 

  48. Knight, SAB, Sunde, RA. Effect of selenium repletion on glutathione peroxidase protein in rat liver. J Nutr 118:853 - 858; 1988.

    PubMed  CAS  Google Scholar 

  49. Takahashi, K, Newburger, PE, Cohen, HJ. Glutathione peroxidase protein. Absence in selenium deficiency states and correlation with enzymatic activity. J Clin Invest 77:1402 - 1404; 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Saedi, MS, Smith, CG, Frampton, J, Chambers, I, Harrison, PR, Sunde, RA. Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem Biophys Res Commun 153:855—861; 1988.

    Article  PubMed  CAS  Google Scholar 

  51. Smith, CG, Saedi, MS, Sunde, RA. The effect of selenium repletion on glutathione peroxidase mRNA and activity in rats. FASEB J 3:A451; 1989.

    Google Scholar 

  52. Yoshimura, S, Takekoshi, S, Watanabe, K, Fujii-Kuriyama, Y. Determination of nucleotide sequence of cDNA coding rat glutathione peroxidase and diminished expression of the mRNA in selenium deficient rat liver. Biochem Biophys Res Commun 154:1024 - 1028; 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Christensen, MJ, Burgener, KW. Dietary selenium stabilizes glutathione peroxidase messenger RNA in rat liver. J Nutr 122:1620 - 1626; 1992.

    PubMed  CAS  Google Scholar 

  54. Hill, KE, Lyons, PR, Burk, RF. Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem Biophys Res Commun 185:260 – 263; 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Li, NQ, Reddy, PS, Thyagaraju, K, Reddy, AP, Hsu, BL, Scholz, RW, Tu, CP, Reddy, CC. Elevation of rat liver mRNA for selenium- dependent glutathione peroxidase by selenium deficiency. J Biol Chem 265:108 - 113; 1990.

    PubMed  CAS  Google Scholar 

  56. Reddy, AP, Hsu, BL, Reddy, PS, Li, N-Q, Thyagaraju, K, Reddy, C, Tam, MF, Tu, CP. Expression of glutathione peroxidase I gene in selenium-deficient rats. Nucleic Acids Res 16:5557 - 5568; 1988.

    Article  PubMed  CAS  Google Scholar 

  57. Reddy, CC, Li, NQ, Reddy, PS, Reddy, AP, Hsu, B, Scholz, RW, Tu, C-PD. Evidence for cotranslational insertion of selenium into glutathione peroxidase from rat liver. FASEB J 2:A765; 1988.

    Google Scholar 

  58. Sunde, RA, Weiss, SL, Thompson, KM, Evenson, JK. Dietary selenium regulation of glutathione peroxidase mRNA—implications for the selenium requirement. FASEB J 6:A1365; 1992.

    Google Scholar 

  59. Weiss, SL, Evenson, JK, Thompson, KM, Sunde, RA. Dietary selenium regulation of glutathione peroxidase expression in female rats. FASEB J 7. A289; 1993.

    Google Scholar 

  60. Zhou, X, Sunde, RA. Effect of selenium status on glutathione per¬oxidase gene transcription in isolated rat liver nuclei. FASEB J 4:A1061; 1990.

    Google Scholar 

  61. Sugimoto, M, Sunde, RA. In vivo and in vitro nuclear transcription indicates selenium regulation of glutathione peroxidase occurs post- transcriptionally. FASEB J 6:A1366; 1992.

    Google Scholar 

  62. Mullner, E, Kuhn, LC. A stem-loop in the 3’ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53:815 - 825; 1988.

    Article  PubMed  CAS  Google Scholar 

  63. Casey, JL, Koeller, DM, Ramin, VC, Klausner, RD, Harford, JB. Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3’ untranslated region of the mRNA. EMBO J 8:3693 - 3699; 1989.

    PubMed  CAS  Google Scholar 

  64. Haile, DJ, Rouault, TA, Harford, JB, Kennedy, MC, Blondin, GA, Beinert, H, Klausner, RD. Cellular regulation of the iron-responsive element binding protein:disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc Natl Acad Sci USA 89:11735 - 11739; 1993.

    Article  Google Scholar 

  65. Behne, D, Duk, M, Elger, W. Selenium content and glutathione peroxidase activity in the testis of the maturing rat. J Nutr 116:1442 - 1447; 1986.

    PubMed  CAS  Google Scholar 

  66. Pinto, RE, Bartley, W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic gluta¬thione oxidation in rat liver homogenates. Biochem J 112:109 - 115; 1969.

    PubMed  CAS  Google Scholar 

  67. Prohaska, JR, Sunde, RA, Zinn, KR. Livers from copper-deficient rats have lower glutathione peroxidase activity and mRNA levels but normal liver selenium levels. J Nutr Biochem 3:429 - 436; 1992.

    Article  CAS  Google Scholar 

  68. Prohaska, JR, Sunde, RA. Comparison of liver glutathione peroxidase activity and mRNA in female and male mice and rats. Comp Biochem Physiol 105B:111 - 116; 1993.

    CAS  Google Scholar 

  69. O’Prey, J, Ramsey, S, Chambers, I, Harrison, PR. Transcriptional up-regulation of the mouse cytosolic glutathione peroxidase gene in erythroid cells is due to a tissue-specific 3’ enhancer containing functionally important CACCC/GT motifs and binding sites for GATA and its transcription factors. Mol Cellular Biol (submitted) 1993.

    Google Scholar 

  70. Jenkinson, SG, Lawrence, RA, Burk, RF, Williams, DM. Effects of copper deficiency on the activity of the selenoenzyme glutathione peroxidase and on excretion and tissue retention of 75Se-selenite. J Nutr 112:197 - 204; 1982.

    PubMed  CAS  Google Scholar 

  71. Takahashi, K, Avissar, N, Whitin, J, Cohen, H. Purification and characterization of human plasma glutathione peroxidase:A seleno- glycoprotein distinct from the known cellular enzyme. Arch Biochem Biophys 256:677 - 686; 1987.

    Article  PubMed  CAS  Google Scholar 

  72. Maiorino, M, Ursini, F, Leonelli, M, Finato, N, Gregolin, C. A pig heart peroxidation inhibiting protein with glutathione peroxidase ac¬tivity on phospholipid hydroperoxides. Biochem Int 5:575 - 583; 1982.

    CAS  Google Scholar 

  73. Maiorino, M, Gregolin, C, Ursini, F. (47) Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol 186:448 - 457; 1990.

    Article  PubMed  CAS  Google Scholar 

  74. Schuckelt, R, Brigelius-Flohé, R, Maiorino, M, Roveri, A, Reumkens, J, Strassburger, W, Flohe, L. Phospholipid hydroperoxide glutathione peroxidase is a selenoenzyme distinct from the classical glutathione peroxidase as evident from cDNA and amino acid sequencing. Free Radic Res Commun 14:343 - 361; 1991.

    Article  PubMed  CAS  Google Scholar 

  75. Sunde, RA, Dyer, JA, Moran, T, Evenson, JK, Sugimoto, M. Phospholipid hydroperoxide glutathione peroxidase:Full-length pig blastocyst cDNA sequence and regulation by selenium status. Biochem Biophys Res Commun 193:905 - 911; 1993.

    Article  PubMed  CAS  Google Scholar 

  76. Weitzel, F, Ursini, F, Wendel, A. Phospholipid hydroperoxide glutathione peroxidase in various mouse organs during selenium deficiency and repletion. Biochim Biophys Acta 1036:88 - 94; 1990.

    PubMed  CAS  Google Scholar 

  77. Behne, D, Hilmert, H, Scheid, S, Gessner, H, Elger, W. Evidence for specific selenium target tissues and new biologically important seleno¬proteins. Biochim Biophys Acta 966:12 - 21; 1988.

    PubMed  CAS  Google Scholar 

  78. Maiorino, M, Chu, FF, Ursini, F, Davies, KJ, Doroshow, JH, Esworthy, RS. Phospholipid hydroperoxide glutathione peroxidase is the 18-kDa selenoprotein expressed in human tumor cell lines. J Biol Chem 266:7728 - 7732; 1991.

    PubMed  CAS  Google Scholar 

  79. Roveri, A, Casasco, A, Maiorino, M, Dalan, P, Calligaro, A, Ursini, F. Phospholipid hydroperoxide glutathione peroxidase of rat testis. Gonadotropin dependence and immunocytochemical identification. J Biol Chem 267:6142 - 6146; 1992.

    PubMed  CAS  Google Scholar 

  80. Calvin, HI, Cooper, GW, Wallace, E. Evidence that selenium in rat sperm is associated with a cysteine-rich structural protein of the mitochondrial capsule. Gamete Res 4:139 - 149; 1981.

    Article  CAS  Google Scholar 

  81. Karimpour, I, Cutler, M, Shih, D, Smith, J, Kleene, K. Sequence of the gene encoding the mitochondrial capsule selenoprotein of mouse sperm:identification of three in-phase TGA selenocysteine codons. DNA Cell Biol 11:693 - 699; 1992.

    Article  PubMed  CAS  Google Scholar 

  82. Evenson, JK, Sunde, RA. Selenium incorporation into selenoproteins in the Se-adequate and Se-deficient rat. Proc Soc Exp Biol Med 187:169 - 180; 1988.

    PubMed  CAS  Google Scholar 

  83. Hoekstra, WG. Biochemical function of selenium and its relation to vitamin E. Fed Proc 34:2083 - 2089; 1975.

    PubMed  CAS  Google Scholar 

  84. Krall, J, Speranza, MJ, Lynch, RE. Paraquat-resistant HeLa cells:increased cellular content of glutathione peroxidase. Arch Biochem Biophys 286:311 - 315; 1991.

    Article  PubMed  CAS  Google Scholar 

  85. Huang, T-T, Carlson, EJ, Leadon, SA, Epstein, CJ. Relationship of resistance to oxygen free radicals to CuZn-superoxide dismutase activity in transgenic, transfected, and trisomic cells. FASEB J 6:903- 910; 1992.

    PubMed  CAS  Google Scholar 

  86. Mirault, M-E, Tremblay, A, Beaudoin, N, Tremblay, M. Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J Biol Chem 266:20752 - 20760; 1991.

    PubMed  CAS  Google Scholar 

  87. Burk, RF, Lawrence, RA, Lane, JM. Liver necrosis and lipid per¬oxidation in the rat as the result of paraquat and diquat administration. Effect of selenium deficiency. J Clin Invest 65:1024 - 1031; 1980.

    Article  PubMed  CAS  Google Scholar 

  88. Hill, KE, Lloyd, RS, Yang, JG, Read, R, Burk, RF. The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame. J Biol Chem 266:10050 - 10053; 1991.

    PubMed  CAS  Google Scholar 

  89. Reiter, R, Wendel, A. Selenium and drug metabolism—II. Independence of glutathione peroxidase and reversibility of hepatic enzyme modulations in deficient mice. Biochem Pharmacol 33:1923–1928; 1984.

    Article  PubMed  CAS  Google Scholar 

  90. Lawrence, RA, Burk, RF. Glutathione peroxidase activity in selenium- deficient rat liver. Biochem Biophys Res Commun 71:952–958; 1976.

    Article  PubMed  CAS  Google Scholar 

  91. Prohaska, JR, Ganther, HE. Glutathione peroxidase activity of glutathione-S-transferase purified from rat liver. Biochem Biophys Res Commun 76:437 – 445; 1977.

    Article  CAS  Google Scholar 

  92. Burk, RF, Nishiki, K, Lawrence, RA, Chance, B. Peroxide removal by selenium-dependent and selenium-independent peroxidases in hemoglobin-free perfused rat liver. J Biol Chem 253:43—46; 1978.

    PubMed  CAS  Google Scholar 

  93. Beckett, GJ, Beddows, SE, Morrice, PC, Nicol, F, Arthur, JR. Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats. Biochem J 248:443 - 447; 1987.

    PubMed  CAS  Google Scholar 

  94. Arthur, JR, Nicol, F, Boyne, R, Allen, KGD, Hayes, JD, Beckett, GJ. Old and new roles for selenium. In:Hemphill, D.D, ed. Trace Substances in Environmental Health XXI. Columbia:University of Missouri; 1987, pp. 487 - 498.

    Google Scholar 

  95. Arthur, JR, Nicol, F, Beckett, GJ. Hepatic iodothyronine 5’ deiodinase:the role of selenium. Biochem J 272:537 - 540; 1990.

    PubMed  CAS  Google Scholar 

  96. Behne, D, Kyriakopoulos, A, Meinhold, H, Köhrle, J. Identification of type I iodothyronine 5’-deiodinase as a selenoenzyme. Biochem Biophys Res Commun 173:1143 - 1149; 1990.

    Article  PubMed  CAS  Google Scholar 

  97. Berry, MJ, Banu, L, Larsen, PR. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438 - 440; 1991.

    Article  PubMed  CAS  Google Scholar 

  98. Koizumi, S, Yamada, H, Suzuki, K, Otsuka, F. Zinc-specific activation of a HeLa cell nuclear protein which interacts with a metal responsive element of the human metallothionein-IIA gene. Eur J Biochem 210:555 - 560; 1992.

    Article  PubMed  CAS  Google Scholar 

  99. Rouault, TA, Hentze, MW, Caughman, SW, Harford, JB, Klausner, RD. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 241:1207 - 1210; 1988.

    Article  PubMed  CAS  Google Scholar 

  100. Ho, Y-S, Howard, AJ, Crapo, JD. Nucleotide sequence of a rat glutathione peroxidase cDNA. Nucl Acids Res 16:5207; 1988.

    Article  PubMed  CAS  Google Scholar 

  101. Mullenbach, GT, Tabrizi, A, Irvine, BD, Bell, GI, Hallewell, RA. Sequence of a cDNA coding for human glutathione peroxidase confirms TGA encodes active site selenocysteine. Nucleic Acids Res 15:5484; 1987.

    Article  PubMed  CAS  Google Scholar 

  102. Sukenaga, Y, Ishida, K, Takeda, T, Takagi, K. cDNA sequence coding for human glutathione peroxidase. Nucl Acids Res 15:7178; 1987.

    Article  PubMed  CAS  Google Scholar 

  103. Mullenbach, GT, Tabrizi, A, Irvine, BD, Bell, GI, Tainer, JA, Hallewell, RA. Selenocysteine’s mechanism of incorporation and evolution revealed in cDNAs of three glutathione peroxidases. Protein Eng 2:239 – 246; 1988.

    Article  PubMed  CAS  Google Scholar 

  104. Akasaka, M, Mizoguch, J, Yoshimura, S, Watanabe, K. Nucleotide sequence of cDNA for rabbit glutathione peroxidase. Nucleic Acids Res 17:2136; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York

About this chapter

Cite this chapter

Sunde, R.A. (1994). Intracellular Glutathione Peroxidases — Structure, Regulation, and Function. In: Burk, R.F. (eds) Selenium in Biology and Human Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2592-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2592-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7597-8

  • Online ISBN: 978-1-4612-2592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics