Skip to main content

Selenocysteine tRNA[Ser]Sec Isoacceptors as Central Components in Selenoprotein Biosynthesis in Eukaryotes

  • Chapter
Selenium in Biology and Human Health

Abstract

In recent years, a variety of experimental results have led to the surprising conclusion that under certain circumstances the UGA termination codon signals the translational insertion of selenocysteine into protein. These studies include the demonstration that (1) a TGA codon (that corresponds to a selenocysteine moiety in the resulting gene products [Cone et al., 1976; Günzler et al., 1984]) occurs in the open reading frame of genes for formate dehydrogenase in E. coli (Zinoni et al., 1986) and glutathione peroxidase (GPx) in mammals (Chambers et al., 1986; Sukenaga et al., 1987; Mullenbach et al., 1988) and (2) a selenocysteyl-tRNA that decodes UGA occurs in E. coli (Leinfelder et al., 1989) and mammals (Lee et al., 1989b). The genes that utilize UGA for selenocysteine (for review see Stadtman, 1991) and the tRNAs that serve as carrier molecules for the biosynthesis of selenocysteine and donate selenocysteine to protein have been observed in a wide variety of organisms as described below. This phenomenon has evolved in all life kingdoms and thus the universal genetic code has been expanded to include selenocysteine as the 21st encoded amino acid (Hatfield et al., 1992b; Hatfield and Diamond, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aaseth, J, Smith-Kielland, A, Thomassen, Y. Selenium, alcohol and liver diseases. Ann Clin Res 18:43 – 47; 1986.

    PubMed  CAS  Google Scholar 

  • Berry, MJ, Banu, L, Larsen, PR. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Burk, RF. Molecular biology of selenium with implications for its metabolism, FASEB 5:2274 – 2279; 1991.

    CAS  Google Scholar 

  • Carbon, P, Krol, A. Transcription of the Xenopus laevis selenocysteine tRNA[Ser]Sec gene:a system that combines an internal B box and upstream elements also found in U6 snRNA genes. EMBO J 10:599–606; 1991.

    PubMed  CAS  Google Scholar 

  • Chambers, I, Frampton, J, Goldfarb, P, Affara, N, McBain, W, Harrison, PR. The structure of the mouse glutathione peroxidase gene; the selenocysteine in the active site is encoded by the termination codon, TGA. EMBO J 5:1221 – 1227; 1986.

    PubMed  CAS  Google Scholar 

  • Choi, IS, Diamond, AM, Crain, PF, Kolker, JC, McCloskey, JA, Hatfield, D. Reconstitution of the biosynthetic pathway of selenocysteine tRNAs in Xenopusoocytes. Submitted for publication; 1993a.

    Google Scholar 

  • Choi, IS, Lee, BJ, Kang, SG, Kim, YS, Hatfield, D. Site specific mutations in the regulatory regions of the selenocysteine tRNA[Ser]Sec gene. Manuscript in preparation; 1993b.

    Google Scholar 

  • Cone, JE, Del Rio, RM, Davis, JM, Stadtman, TC. Chemical characterization of the selenoprotein component of clostridial glycine reductase:identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci USA 73:2659 - 2663; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, AM, Dudock, B, Hatfield, D. Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Cell 25:497 - 506; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, AM, Montero-Puerner, Y, Lee, BJ, Hatfield, D. Selenocysteine inserting tRNAs are likely generated by tRNA editing. Nucleic Acids Res 18:6727; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, AM, Choi, IS, Crain, PF, Hashizume, T, Pomerantz, SC, Cruz, R, Steer, C, Hill, KE, Burk RF, McCloskey, JA, Hatfield, D. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA[Ser]Sec. J Biol Chem 268:14215 - 14223; 1993.

    PubMed  CAS  Google Scholar 

  • Forchhammer, K, Leinfelder, W, Bock, A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342:453 - 456; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer, K, Rücknagel, K-P, Böck, A. Purification and biochemical characterization of SELB, a translation factor involved in selenoprotein synthesis. J Biol Chem 265:9346 - 9350; 1990.

    PubMed  CAS  Google Scholar 

  • Forchhammer, K, Böck, A. Selenocysteine synthase from Escherichia coli:analysis of the reaction sequence. J Biol Chem 266:6324—6328; 1991.

    PubMed  CAS  Google Scholar 

  • Günzler, WA, Steffens, GT, Grossman, A, Kim, S-M, Otting, F, Wendel, A, Flohé, L. The amino-acid sequence of bovine glutathione peroxidase. Hoppe-Seyler’s Z. Physiol Chem 365:195 – 212; 1984.

    Google Scholar 

  • Hatfield, D, Portugal, FH. Seryl-tRNA in mammalian tissues:chromatographic differences in brain and liver and a specific response to the codon, UGA. Proc Natl Acad Sci USA 67:1200 - 1206; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield, D. Recognition of nonsense codons in mammalian cells. Proc Natl Acad Sci USA 67:3014 - 3018; 1972.

    Article  Google Scholar 

  • Hatfield, D, Diamond, AM, Dudock, B. Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. Proc Natl Acad Sci USA 79:6215- 6219; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield, D, Dudock, B, Eden, F. Characterization and nucleotide sequence of a chicken gene encoding an opal suppressor tRNA and its flanking DNA segments. Proc Natl Acad Sci USA 80:4940 - 4944; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield, DL, Smith, DWE, Lee, BJ, Worland, PJ, Oroszlan, S. Structure and function of suppressor tRNAs in higher eukaryotes. Crit Rev Biochem Mol Biol 25:71 - 96; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield, D, Lee, BJ, Hampton, L, Diamond, AM. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population of mammalian cells. Nucleic Acids Res 19:939 - 943; 1991a.

    Article  CAS  Google Scholar 

  • Hatfield, DL, Lee, BJ, Price, NM, Stadtman, TC. Selenocysteyl-tRNA occurs in the diatom Thalassiosiraand in the ciliate Tetrahymena. Mol Microbiol 5:1183 - 1186; 1991b.

    Article  CAS  Google Scholar 

  • Hatfield, D, Choi, IS, Mischke, S, Owens, LD, Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochem Biophys Res Comm 184:254—259; 1992a.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield, D, Choi, IS, Lee, BJ, Jung, J-E. Selenocysteine, a new addition to the universal genetic code. In:Hatfield, D, Lee, BJ, Pirtle, R, eds. Transfer RNA in Protein Synthesis. Boca Raton, FL CRC Press, Inc.; 1992b, pp 265 – 274.

    Google Scholar 

  • Hatfield, D, Diamond, AM. UGA:A split personality in the universal genetic code. Trends Genet 9:69 – 70; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Heider, J, Leinfelder, W, Böck, A. Occurrence and functional compatibility within Enterobacteriaceae of a tRNA species that inserts selenocysteine into protein. Nucleic Acids Res 17:2529 – 2540; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Hill, KE, Lloyd, RS, Yang, J-G, Reed, R, Burk, RF. The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame. J Biol Chem 266:10050 - 10053; 1991.

    PubMed  CAS  Google Scholar 

  • Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol 58:439 - 458; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Ip, C. Selenium and experimental cancer. Ann Clin Res 18:22—29; 1986.

    PubMed  CAS  Google Scholar 

  • Jung, J-E, Karoor, V, Ohama, T, Choi, IS, Lee, BJ, Mullenbach, G, Wahba, A, Hatfield, D. Direct incorporation of selenocysteine into glutathione peroxidase. Manuscript in preparation; 1993.

    Google Scholar 

  • Khorana, GH, Büchi, H, Ghosh, H, Gupta, N, Jacob, TM, Kössel, H, Morgan, R, Narang, SA, Ohtuska, E, Wells, RD. Polynucleotide synthesis and the genetic code. Cold Spring Harbor Symp Quant Biol 31:39—49; 1966.

    PubMed  CAS  Google Scholar 

  • Lane, HW, Medina, D. Selenium concentration and glutathione peroxidase activity in normal and neoplastic development of the mouse mammary gland. Cancer Res 43:1558 - 1561; 1983.

    PubMed  CAS  Google Scholar 

  • Lane, HW, Tracey, CK, Medina, D. Growth, reproduction rates and mammary gland selenium concentration and glutathione peroxidase activity of BALB/c female mice fed two dietary levels of selenium. J Nutr 114:323- 331; 1984.

    PubMed  CAS  Google Scholar 

  • Lee, BJ, de la Pena, P, Tobian, JA, Zasloff, M, Hatfield, D. Unique pathway of expression of an opal suppressor phosphoserine tRNA. Proc Natl Acad Sci USA 84:6384 - 6388; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Lee, BJ, Kang, SG, Hatfield, D. Transcription of Xenopus opal suppressor phosphoserine tRNASer (formerly designated opal suppressor phosphoserine tRNA) gene is directed by multiple 5’ extragenic regulatory elements. J Biol Chem 264:9696 - 9702; 1989a.

    CAS  Google Scholar 

  • Lee, BJ, Worland, PJ, Davis, JN, Stadtman, TC, Hatfield, DL. Identification of a selenocysteyl-tRNASer in mammalian cells that recognizes the non-sense codon, UGA. J Biol Chem 264:9724 - 9727; 1989b.

    CAS  Google Scholar 

  • Lee, BJ, Rajagopalan, M, Kim, YS, You, K-H, Jacobson, KB, Hatfield, D. Selenocysteine tRNA[Ser]Sec gene is ubiquitous within the animal kingdom. Mol Cell Biol 10:1940 – 1949; 1990.

    PubMed  CAS  Google Scholar 

  • Leinfelder, W, Stadtman, TC, Böck, A. Occurrence in vivoof selenocysteyl- tRNAUCA in Echerichia coli. J Biol Chem 264:9720 - 9723; 1989.

    PubMed  CAS  Google Scholar 

  • Leinfelder, W, Forchhammer, K, Veprek, B, Zehelein, E, Böck, A. In vitrosynthesis of selenocysteinyl-tRNAUCA from seryl-tRNAucA- involvement and characterization of the selD gene product. Proc Natl Acad Sci USA 87:543 - 547; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Mäenpää, PH, Bernfield, MR. A specific hepatic transfer RNA for phosphoserine. Proc Natl Acad Sci USA 67:688 - 695; 1970.

    Article  PubMed  Google Scholar 

  • Margulis, L, Schwartz, KV. Five Kingdoms, an Illustrated Guide to the Phyla of Life on Earth 2nd ed. San Francisco, WH Freeman; 1988.

    Google Scholar 

  • Marshall, R, Caskey, T, Nirenberg, M. Fine structure of RNA codewords recognized by bacterial, amphibian and mammalian transfer RNA. Science 155:820 - 826; 1967.

    Article  PubMed  CAS  Google Scholar 

  • McBride, OW, Rajagopalan, M, Hatfield, D. Opal suppressor phosphoserine tRNA gene and pseudogene are located on human chromosomes 19 and 22, respectively. J Biol Chem 262:11163 - 11166; 1987.

    PubMed  CAS  Google Scholar 

  • Mitchell, A, Bale, AE, Lee, BJ, Hatfield, D, Harley, H, Rundle, S, Fan, YS, Fukushima, Y, Shows, TB, McBride, OW. Regional localization of the selenocysteine tRNA gene (TRSP) on human chromosome 19. Cytogenet Cell Genet 61:117 - 120; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Medina, D, Morrison, DG. Current ideas on selenium as a chemopreventive agent. Pathol Immunopathol Res 7:187 - 199; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, T, Hashimoto, A. Purification and properties of suppressor seryl- tRNA:ATP phosphotransferase from bovine liver. FEBS Lett 169:319- 322; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, T, Hitaka, T. Stronger affinity of reticulocyte release factor than natural suppressor tRNASer for the opal termination codon. FEBS Lett 226:227 - 231; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, T. Some evidence of the enzymatic conversion of bovine suppressor phosphoseryl-tRNA to selenocysteyl-tRNA. FEBS Lett 250:142 - 146; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, T, Maruyama, N, Hitaka, T, Sukenaga, Y. The detection of natural opal suppressor seryl-tRNA in Echerichia coliby the dot blot hybridization and its phosphorylation by a tRNA kinase. FEBS Lett 247; 345 - 348; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, T, Kurata, H, Yamada, K. Study of mammalian selenocysteyl-tRNA synthesis with [75Se] HSe‾. FEBS Lett 289:59 – 63; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, T, Kurata, H, Yamada, K, Totsuka, T. Some properties of murine selenocysteine synthase. Biochem J 284:827—834; 1992.

    PubMed  CAS  Google Scholar 

  • Mullenbach, GT, Tabrizi, A, Irvine, BD, Bell, GI, Hallewell, RA. Selenocysteine’s mechanism of incorporation and evolution revealed in cDNAs of three glutathione peroxidases. Protein Eng 2:239 - 246; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Myslinski, E, Krol, A, Carbon, P. Optimal tRNA[Ser]Sec gene activity requires an upstream SPH motif. Nucleic Acids Res 20:203 - 209; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg, M, Caskey, T, Marshall, R, Brimacombe, R, Kellog, D, Doctor, B, Hatfield, D, Levin, J, Rottman, F, Pestka, S, Wilcox, M, Anderson, F. The RNA code and protein synthesis. Cold Spring Harbor Symp Quant Biol 31:11 - 24; 1966.

    PubMed  CAS  Google Scholar 

  • O’Neill, VA, Eden, FC, Pratt, K, Hatfield, D. A human opal suppressor tRNA gene and pseudogene. J Biol Chem 260:2501 - 2508; 1985.

    PubMed  Google Scholar 

  • Pratt, K, Eden, FC, You, KH, O’Neill, VA, Hatfield, D. Conserved sequences in both coding and 5’ flanking regions of mammalian opal suppressor tRNA genes. Nucleic Acids Res 13:4765 - 4775; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Salonen, JT, Huttunen, JK. Selenium in cardiovascular diseases. Ann Clin Res 18:30 - 35; 1986.

    PubMed  CAS  Google Scholar 

  • Sharp, SJ, Stewart, TS. The characterization of phosphoseryl tRNA from lactating bovine mammary gland. Nucleic Acids Res 4:2123 - 2136; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, TC. Biosynthesis and function of selenocysteine-containing enzymes. J Biol Chem 266:16257 - 16260; 1991.

    PubMed  CAS  Google Scholar 

  • Stewart, TS, Sharp, SJ. Characterizing the function of Oβ-phosphoseryl- tRNA. Methods Enzymol 106:157 – 161; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Sturchler, C, Westhof, E, Carbon, P, Krol, A. Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNASec. Nucleic Acids Res 21:1073 – 1079; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Sukenaga, Y, Ishida, K, Takeda, T, Takagi, K. cDNA sequence coding for human glutathione peroxidase. Nucleic Acids Res 15:7178; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Veres, Z, Tsai, L, Scholz, TD, Politino, M, Balaban, RS, Stadtman, TC. Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs:31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc Natl Acad Sci USA 89:2975–2979; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Zinoni, F, Birkmann, A, Stadtman, TC, Böck, A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 83:4650 – 4654; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Zinoni, F, Heider, J, Böck, A. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci USA 87:4660 – 4664; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York

About this chapter

Cite this chapter

Hatfield, D.L., Choi, I.S., Ohama, T., Jung, JE., Diamond, A.M. (1994). Selenocysteine tRNA[Ser]Sec Isoacceptors as Central Components in Selenoprotein Biosynthesis in Eukaryotes. In: Burk, R.F. (eds) Selenium in Biology and Human Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2592-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2592-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7597-8

  • Online ISBN: 978-1-4612-2592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics