Advertisement

Design of Chemically Modified and Recombinant Hemoglobins as Potential Red Cell Substitutes

  • James M. Manning

Abstract

Modified cell-free hemoglobin derivatives have been under study as potential red cell substitutes for nearly three decades (Winslow 1992). These derivatives are prepared by treatment of hemoglobin with some chemical reagent to yield a product that possesses a property considered desirable for a blood substitute. The degree of sophistication of these derivatives has, in general, increased in proportion to our knowledge of hemoglobin itself.

Keywords

Oxygen Affinity Human Hemoglobin Blood Substitute Chloride Binding Covalent Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, D.J., F.C. Wireko, R.S. Randad, C. Poyart, J. Kister, B. Bohn, J.-F. Liard, and M.P. Kunert.Allosteric modifiers of hemoglobin: 2- [4- [[(3,5-disubstituted anilino) carbonyl] methyl] phenoxy] -2-meth-ylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspension, in while blood, andin vivoin rats.Biochemistry31: 9141–9149, 1992.PubMedCrossRefGoogle Scholar
  2. Arnone, A.X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 237: 146–149, 1972.PubMedCrossRefGoogle Scholar
  3. Benesch, R., and R.E. Benesch.Preparation and properties of hemoglobin modified with derivatives of pyridoxal.Meth. Enzymol.76: 147–158, 1981.PubMedCrossRefGoogle Scholar
  4. Benesch, R., R.E. Benesch, and S. Kwong.Labeling of hemoglobin with pyridoxal phosphate.J. Biol Chem.257: 1320–1324, 1982.PubMedGoogle Scholar
  5. Benesch, R.E., R. Benesch, R.D. Renthal, and N. Maeda.Affinity labeling of the polyphosphate binding site of hemoglobin.Biochemistry11: 3576–3582, 1972.PubMedCrossRefGoogle Scholar
  6. Benesch, R., R.E. Benesch, S. Yung, and R. Edalji.Hemoglobin covalently bridges across the polyphosphate binding site.Biochem. Biophys. Res. Comm.63: 1123–1129, 1975.PubMedCrossRefGoogle Scholar
  7. Benesch, R.E., and S. Kwong.Bispyridoxal polyphosphates: a new class of specific intramolecular cross-linking agents for hemoglobin.Biochem. Biophys. Res. Comm.156: 9–14, 1988.PubMedCrossRefGoogle Scholar
  8. Benesch, R., L. Triner, R.E. Benesch, S. Kwong, and M. Verosky.Enhanced oxygen unloading by an interdimerically cross-linked hemoglobin in an isolated perfused rabbit heart. Proc. Natl. Acad. Sci. USA 81: 2941–2943, 1984.PubMedCrossRefGoogle Scholar
  9. Bonaventura, J., C. Bonaventura, B. Sullivan, G. Ferruzzi, P.R. McCurdy, J. Fox, and W.F. Moo-Pen.Hemoglobin Providence.J. Biol Chem.251: 7563, 1976.PubMedGoogle Scholar
  10. Bucci, E., A. Razynska, B. Urbaitis, and C. Fronticelli.Pseudo-cross-link of human hemoglobin with mono-(3,5-dibromosalicyl)-fumar-ate.J. Biol. Chem.264: 6191–6195, 1989.PubMedGoogle Scholar
  11. Bunn, H.F., and J.H. Jandl.Renal handling of hemoglobin.Trans. Assoc. Am. Physicians81: 147–152, 1968.PubMedGoogle Scholar
  12. Chang, T.M.S., and R. Geyer(eds.) Proceedings of II International Symposium on Blood Substitutes.Biomater. Artif. Cells Artif. Organs,1988.Google Scholar
  13. Chatterjee, R., E.V. Welty, R.Y. Walder, S.I. Pruitt, P.H. Rogers, A. Arnone, and JA. Walder.Isolation and characterization of a new hemoglobin derivative cross-linked between a chains (lysine 99α-lysine 99α2).J. Biol Chem.261: 9929–9937, 1986.PubMedGoogle Scholar
  14. Chiancone, E., J.E. Nome, S. Forsen, E. Antonini, and J. Wyman.Nuclear magnetic resonance quadrupole relaxation studies of chloride binding to human oxy- and deoxyhaemoglobin.J. Mol. Biol.70: 675–688, 1972.PubMedCrossRefGoogle Scholar
  15. DeVenuto, F., and A. Zegna.Blood exchange with pyridoxylated and polymerized hemoglobin solution.Surg. Gynecol. Obstet.155: 342–346, 1982.PubMedGoogle Scholar
  16. DiDonato, A., W.J. Fanti, A.S. Acharya, and J.M. Manning.Selective carboxymethylation of the α-amino groups of hemoglobin. Effect on functional properties.J. Biol. Chem.258: 11890–11895, 1983.PubMedGoogle Scholar
  17. Fantl, W.J., A. DiDonato, J.M. Manning, P.H. Rogers, and A. Arnone.Specifically carboxymethylated hemoglobin as an analogue of carbamino hemoglobin: solution and x-ray studies of carboxymethylated hemoglobin and x-ray studies of carbamino hemoglobin. J. Biol. Chem. 262: 12700–12713, 1987a.Google Scholar
  18. Fantl, W.J., L.R. Manning, H. Ueno, A. DiDonato, and J.M. Manning.Properties of carboxymethylated, cross-linked hemoglobin A.Biochemistry26: 5755–5761, 1987b.CrossRefGoogle Scholar
  19. Hess, J.R., S.O. Fadare, L.S.L. Tolentino, N.R. Bangal, and R.M. Winslow.The intravascular persistence of crosslinked human hemoglobin. InThe Red Cell Ann: Seventh Ann Arbor Conference(G.J. Brewer, ed.) 351–360, New York: Alan R. Liss, 1989.Google Scholar
  20. Groebe, D.R., M.R. Busch, T.Y.M. Tsao, F.Y. Luh, A.E. Chung, M. Gaskell,, S.A. Liebhaber, and C. Ho.High production of human α-and β-globins in insect cells.Protein Expression and Purification3: 131–141, 1992.Google Scholar
  21. Kluger, R., J. Wodzinska, R.T. Jones, C. Head, T.S. Fujita, and D.T. Shih.Three-point cross-linking: potential red cell substitutes from the reaction of trimesoyl tris(methyl phosphate) with hemoglobin.Biochemistry31: 7551–7559, 1992.PubMedCrossRefGoogle Scholar
  22. Kluger, R., J. Wodzinska, R.T. Jones, C. Head, T.S. Fujita, and D.T. Shih.Three-point cross-linking: potential red cell substitutes from the reaction of trimesoyl tris(methyl phosphate) with hemoglobin.Biochemistry31: 7551–7559, 1992.PubMedCrossRefGoogle Scholar
  23. Lalezari, I., P. Lalezari, C. Poyart, M. Marden, J. Kister, B. Bohn, G. Fermi, and M.F. Perutz.New effectors of human hemoglobin: structure and function.Biochemistry29: 1515–1523, 1990.PubMedCrossRefGoogle Scholar
  24. Manning, J.M.Covalent inhibitor of the gelation of sickle cell hemoglobins and their effects on function.Adv. Enzymol.64: 55–91, 1991.PubMedGoogle Scholar
  25. Manning, L.R., and J.M. Manning.Influence of the ligation state and the concentration of hemoglobin A on its crosslinking by glycolaldehyde: functional properties of crosslinked carboxymethylated hemoglobin.Biochemistry27: 6640–6644, 1988.PubMedCrossRefGoogle Scholar
  26. Martin de Llano, J.J., W. Jones, K. Schneider, B.T. Chait, G. Rodgers, L.J. Benjamin, B. Weksler, and J.M. Manning.Biochemical and functional properties of recombinant human sickle hemoglobin expressed in yeast.J. Biol. Chem.268: 27004–27011, 1993a.Google Scholar
  27. Martin de Llano, J.J., O. Schneewind, G. Stetler, and J.M. Manning.Recombinant sickle hemoglobin in yeast.Proc. Natl. Acad. Sci. USA90: 918–922, 1993b.CrossRefGoogle Scholar
  28. Moss, G.S., SA. Gould, A.L. Rosen, L.R. Sehgal, and H.L. Sehgal.Results of the first clinical trial with a polymerized hemoglobin solution.Biomater. Artif. Cells Artif. Organs17: 633, 1989.Google Scholar
  29. Nagai, K., and H.C. Thogersen.Generation of β-globin by sequence-specific proteolysis of a hybrid protein produced inEscherichia coli.Nature309: 810–812, 1984.PubMedCrossRefGoogle Scholar
  30. Nigen, A.M., J.M. Manning, and J.O. Alben.Oxygen-linked binding sites for inorganic anions to hemoglobin.J. Biol. Chem.255: 5525, 1980.PubMedGoogle Scholar
  31. Perrella, M., L. Rossi-Bernardi, and F.J.W. Roughton.The carbamate equilibrium between CO2and bovine haemoglobin at 25°C. InOxygen Affinity of Hemoglobin and Red Cell Acid Base Status( P. Astrup and M. Rorth, eds.), Alfred Benzon, Symposium IV, 1972.Google Scholar
  32. Perutz, M.F., D.T.-b. Shih and D. Williamson.The chloride effect in human haemoglobin. A new kind of allosteric mechanism.J. Mol. Biol.239: 555–560, 1994.PubMedCrossRefGoogle Scholar
  33. Shen, T.-J., N.T. Ho, V. Simplaceanu, M. Zou, B.N. Green, M.F. Tam, and C. Ho.Production of unmodified human adult hemoglobin inEscherichia coli.Proc. Natl. Acad. Sci. USA90: 8108–8112, 1993.PubMedCrossRefGoogle Scholar
  34. Tam, S.C., J. Blumenstein, and J.T. Wong.Dextran hemoglobin.Proc. Natl. Acad. Sci. USA73: 2118–2121, 1976.CrossRefGoogle Scholar
  35. Ueno, H., and J.M. Manning.The functional, oxygen-linked chloride binding sites of hemoglobin are contiguous within a channel in the central cavity.J. Prot. Chem.11: 177–185, 1992.CrossRefGoogle Scholar
  36. Ueno, H., A.M. Popowicz, and J.M. Manning.Random chemical modification of the oxygen-linked chloride binding sites of hemoglobin: those in the central dyad axis may influence the transition between deoxy- and oxyhemoglobin.J. Prot. Chem.12: 561–570, 1994.CrossRefGoogle Scholar
  37. Vandegriff, K.D., F. Medina, M. Marini, and R.M. Winslow.Equilibrium oxygen binding to human hemoglobin crosslinked between the α chains by bis(3,5-dibromosalicyl)fiimarate.J. Biol. Chem.264: 17824–17833, 1989.PubMedGoogle Scholar
  38. Wagenbach, M., K. O’Rourke, L. Vitez, A. Wieczorek, S. Hoffman, S. Durfee, J. Tedesco, and G. Stetler.Synthesis of wild type and mutant human hemoglobins inSaccharomyces cerevisiae.Bio/Technology9: 57–61, 1991.PubMedCrossRefGoogle Scholar
  39. Winslow, R.M. Hemoglobin-based red cell substitutes. Baltimore: Johns Hopkins University Press, 1992.Google Scholar
  40. Winslow, R.M. Hemoglobin-based red cell substitutes. Baltimore: Johns Hopkins University Press, 1992.Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • James M. Manning
    • 1
  1. 1.Rockefeller UniversityNew YorkUSA

Personalised recommendations