Skip to main content

Critical Point Theory and Applications to Differential Equations: A Survey

  • Chapter

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 15))

Abstract

The purpose of this paper is to survey developments in the field of critical point theory and its applications to differential equations that have occurred during the past 20–25 years. This is too broad a theme for a single survey and we will focus on three particular areas. First we will examine contributions to the minimax approach to critical point theory. In particular the Mountain Pass Theorem, the Saddle Point Theorem, and variants thereupon will be discussed in Part 1. Then in Part 2, applications of critical point theory to the existence of periodic solutions of Hamiltonian systems of differential equations will be surveyed. Many of the different questions that have been studied will be described and a variety of results will be presented. Lastly, Part 3 deals with connecting orbits of Hamiltonian systems, mainly homoclinic and heteroclinic orbits. This last set of material represents the least developed subject matter treated here and therefore it can be described more completely than the earlier topics.

This research was sponsored in part by the National Science Foundation under Grant #MCS-8110556 and by the US Army under contract #DAAL03-87- k-0043. Any reproduction for the pruposes of the US Government is permitted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosetti, A., Critical Points and Nonlinear Variational Problems, Mémoire 49, Soc. Math. de France, 1992.

    Google Scholar 

  2. Ambrosetti, A., Elliptic equations with jumping nonlinearities, J. Math. Phys. Sci. (Madras), 1984, 1–10.

    Google Scholar 

  3. Ambrosetti, A. and M. L. Bertotti, Homoclinics for second order conservative systems, Proc. Conf. in honor of L. Nirenberg, to appear.

    Google Scholar 

  4. Ambrosetti, A., V. Benci, and Y. Long, A note on the existence of multiple brake orbits, to appear in Nonlinear Analysis: TMA.

    Google Scholar 

  5. Ambrosetti, A. and V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, preprint.

    Google Scholar 

  6. Alama, S. and Y. Y. Li, On “multibump” bound states for certain semilinear elliptic equations, preprint.

    Google Scholar 

  7. Ahmad, S. A. C. Lazer and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25, 1976, 933–944.

    MathSciNet  MATH  Google Scholar 

  8. Amann, H., Saddle points and multiple solutions of differential equations, Math. Z. 196, 1979, 127–166.

    MathSciNet  Google Scholar 

  9. Ambrosetti, A. and G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Differential Equations 43, 1981, 1–6.

    MathSciNet  Google Scholar 

  10. Ambrosetti, A. and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann. 255, 1981, 405–421.

    MathSciNet  MATH  Google Scholar 

  11. Ambrosetti, A. and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Math. 34, 1993.

    Google Scholar 

  12. Ambrosetti, A. and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, 1973, 349–381.

    MathSciNet  MATH  Google Scholar 

  13. Amann, H. and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7, 1980, 539–603.

    MathSciNet  MATH  Google Scholar 

  14. Amann, H. and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manus. Math. 32, 1980, 149–189.

    MathSciNet  MATH  Google Scholar 

  15. Bahri, A., Critical Points at Infinity in some Variational Problems, Wiley, 1989.

    MATH  Google Scholar 

  16. Berestycki, H., Solutions periodiques de systemes hamiltoniens, Sem. Bourbaki 1982/83, expose 603, Astérisque, 1983, 105–128.

    Google Scholar 

  17. Bahri, A. and P. L. Lions, Remarks on the variational theory of critical points and applications, C. R. Acad. Sc. Paris, Sci. I. Math. 301, 1985, 145–148.

    MathSciNet  MATH  Google Scholar 

  18. Bahri, A. and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. 45, 1992, 1205–1215.

    MathSciNet  MATH  Google Scholar 

  19. Bahri, A. and P. Rabinowitz, Periodic solutions of Hamiltonian systems of 3-body type, Ann. IHP-Analyse Nonlin. 8, 1991, 561–649.

    MathSciNet  MATH  Google Scholar 

  20. Bahri, A. and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267, 1981, 1–32.

    MathSciNet  MATH  Google Scholar 

  21. Bahri, A. and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta. Math. 152, 1984, 143–197.

    MathSciNet  MATH  Google Scholar 

  22. Bahri, A. and H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37, 1984, 403–442.

    MathSciNet  MATH  Google Scholar 

  23. Bahri, A. and J-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41, 1981, 253–294.

    MathSciNet  Google Scholar 

  24. Bartsch, T. and M. Clapp, The compact category and multiple periodic solutions of Hamiltonian systems on symmetric starshaped energy surfaces, Math. Ann. 293, 1992, 523–542.

    MathSciNet  MATH  Google Scholar 

  25. Brezis, H., J. M. Coron, and L. Nirenbergy, Free vibrations of a semilinear wave equation and a theorem of Rabinowitz, Comm. Pure Appl. Math. 33, 1980, 667–689.

    MathSciNet  MATH  Google Scholar 

  26. Benci, V., A geometrical index for the group S 1 and some applications to the research of periodic solutions of O.D.E.’s, Comm. Pure Appl. Math. 34, 1981, 393–432.

    MathSciNet  MATH  Google Scholar 

  27. Benci, V. and D. Fortunato, ‘Birkhoff-Lewis’ type result for a class of Hamiltonian systems, Manus. Math. 59, 1987, 441–456.

    MathSciNet  MATH  Google Scholar 

  28. Benci, V., D. Fortunato, and F. Giannoni, On the existence of periodic trajectories in static Lorentz manifolds with nonsmooth boundary, Nonlinear Analysis: A tribute in honor of G. Prodi, Quad. del. Sc. Norm. Sup. Pisa, A. Ambrosetti and A. Marino ed., 1991.

    Google Scholar 

  29. Berger, M. S., Nonlinearity and functional analysis, Academic Press, New York, 1978.

    Google Scholar 

  30. Benci, V. and F. Giannoni, Homoclinic orbits on compact manifolds, J. Math. Anal. and Appl. 157, 1991, 568–576.

    MathSciNet  MATH  Google Scholar 

  31. Benci, V., H. Hofer, and P. H. Rabinowitz, A remark on a priori bounds and existence for periodic solutions of Hamiltonian systems, Periodic Solutions of Hamiltonian Systems and Related Topics, P. H. Rabinowitz et. al. eds., D. Reidel, 1987, 85–88.

    Google Scholar 

  32. Birkhoff, G. D., Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18, 1917, 199–300.

    MathSciNet  MATH  Google Scholar 

  33. Berestycki, H., J. M. Lasry, G. Mancini and B. Ruf, Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. 38, 1985, 253–290.

    MathSciNet  MATH  Google Scholar 

  34. Brezis, H. and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36, 1982, 437–477.

    MathSciNet  Google Scholar 

  35. Brezis, H. and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44, 1991, 939–963.

    MathSciNet  MATH  Google Scholar 

  36. Bolotin, S., Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Matem. Mekh. 6, 1978, 72–77.

    MathSciNet  Google Scholar 

  37. Bolotin, S., Existence of homoclinic motions, Vestnik Moskov. Univ. Ser I, Matem. Mekh 6, 1983, 98–103.

    MathSciNet  Google Scholar 

  38. Bolotin, S., Homoclinic orbits to invariant tori of symplectic diffeomorphisms and Hamiltonian systems, preprint.

    Google Scholar 

  39. Brezis, H., Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. 8, 1983, 409–426.

    MathSciNet  MATH  Google Scholar 

  40. Brezis, H. and J. M. Coron, Periodic solutions of nonlinear wave equations and Hamiltonian systems, Amer. J. Math. 103, 1981, 559–570.

    MathSciNet  MATH  Google Scholar 

  41. Benci, V. and P. H. Rabinowitz, Critical point theorems for indefinite Junctionals, Invent. Math. 52, 1979, 241–273.

    MathSciNet  MATH  Google Scholar 

  42. Benci, V. and P. H. Rabinowitz, A priori bounds for periodic solutions of Hamiltonian systems, Ergodic Th. and Dynam. Sys. 8, 1988, 27–31.

    MathSciNet  Google Scholar 

  43. Bessi, H., preprint.

    Google Scholar 

  44. Browder, F. E., Infinite dimensional manifolds and nonlinear eigenvalue problems, Ann. of Math. (2) 82, 1965, 459–477.

    MathSciNet  MATH  Google Scholar 

  45. Browder, F. E., Nonlinear eigenvalues and group invariance, Functional Analysis and Related Fields (F. E. Browder, ed.), Springer-Verlag, Berlin and New York, 1970, 1–58.

    Google Scholar 

  46. Clark, D., On periodic solutions of autonomous Hamiltonian systems of ordinary differential equations, Proc. AMS 39, 1973, 579–584.

    MATH  Google Scholar 

  47. Conley, C. C., Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, R. I., 1978.

    MATH  Google Scholar 

  48. Cerami, G., Un criterio di esistenza per i punti critici su varieta illimitate, Rend. Acad. Sci. Let. Ist. Lombardo 112, 1978, 332–336.

    MathSciNet  Google Scholar 

  49. Clarke, F. and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33, 1980, 103–116.

    MathSciNet  MATH  Google Scholar 

  50. Chang, K. C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhaüser, 1993.

    MATH  Google Scholar 

  51. Chang, K. C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80, 1981, 102–129.

    MathSciNet  MATH  Google Scholar 

  52. Chang, K. C., On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Analysis TMA 13, 1989, 527–538.

    MATH  Google Scholar 

  53. Chang, K. C., Applications of homology theory to some problems in differential equations and analysis, Nonlinear Analysis and Applications, F. E. Browder ed., Proc. Symp. Pure Math. V45 AMS, 1986, 253–262.

    Google Scholar 

  54. Clarke, F., A classical variational principle for periodic Hamiltonian trajectories, Proc. A.M.S. 76, 1979, 186–189.

    MATH  Google Scholar 

  55. Clarke, F., Periodic solutions of Hamiltonian inclusions, J. Diff. Eq. 40, 1981, 1–6.

    MATH  Google Scholar 

  56. Castro, A. and A. Lazer, Applications of a maximum principle, Rev. Columbiana, Mat. 10, 1976, 141–149.

    MathSciNet  MATH  Google Scholar 

  57. Costa, D. G. and C. A. Magalhães, A unified approach to a class of strongly indefinite functionals, preliminary version.

    Google Scholar 

  58. Coffman, C. V., A minimum-maximum principle for a class of nonlinear integral equations, J. Analyse Math. 22, 1969, 391–419.

    MathSciNet  MATH  Google Scholar 

  59. Costa, D. and M. Willem, Multiple critical points of invariant functional and applications, J. Nonlin. Analysis 9, 1986, 843–852.

    MathSciNet  Google Scholar 

  60. Conley, C. and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. Arnold, Inv. Math. 73, 1983, 33–49.

    MathSciNet  MATH  Google Scholar 

  61. Coti Zelati, V., I. Ekeland, and P. L. Lions, to appear.

    Google Scholar 

  62. Coti Zelati, V., I. Ekeland, and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288, 1990, 133–160.

    MathSciNet  MATH  Google Scholar 

  63. Coti Zelati, V. and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4, 1992, 693–727.

    MathSciNet  Google Scholar 

  64. Coti Zelati, V. and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE onn, Comm. Pure Appl. Math., 45, 1992, 1217–1269.

    MathSciNet  MATH  Google Scholar 

  65. Deimling, K., Nonlinear Functional Analysis, Springer, 1985.

    MATH  Google Scholar 

  66. De Figueiredo, D. G., Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Inst. of Fund. Research, 1989.

    MATH  Google Scholar 

  67. Ekeland, I., Convexity Methods in Hamiltonian Mechanics, Springer, 1990.

    MATH  Google Scholar 

  68. Ekeland, I. and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81, 1985, 155–188.

    MathSciNet  MATH  Google Scholar 

  69. Ekeland, I. and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40, 1987, 1–36.

    MathSciNet  MATH  Google Scholar 

  70. Ekeland, I. and Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200, 1989, 355–378.

    MathSciNet  MATH  Google Scholar 

  71. Ekeland, I. and H. Hofer, Convex Hamiltonian energy surfaces and their closed trajectories, Comm. Math. Phys. 113, 1987, 419–467.

    MathSciNet  MATH  Google Scholar 

  72. Ekeland, I. and J.-M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math. (2) 112, 1980, 283–319.

    MathSciNet  MATH  Google Scholar 

  73. Ekeland, I. and L. Lassoued, Multiplicité des trajectories fermées d’un système Hamiltonian sur une hypersurface d’énergies convexe, Ann. IHP - Analyse nonlin. 4, 1987, 1–29.

    MathSciNet  Google Scholar 

  74. Felmer, P. L., Subharmonic near an equilibrium point for Hamiltonian systems, Manu. Math. 66, 1990, 359–396.

    MathSciNet  MATH  Google Scholar 

  75. Felmer, P. L., Periodic solutions of ‘superquadratic’ Hamiltonian systems, (to appear) J. Diff. Eq.

    Google Scholar 

  76. Felmer, P. L., Periodic solutions of spatially periodic Hamiltonian systems, J. Diff. Eq. 98, 1992, 143–168.

    MathSciNet  MATH  Google Scholar 

  77. Felmer, P. L., Multiple periodic solutions for Lagrangian systems in Tn, Nonlinear Analysis, TMA 15, 1990, 815–831.

    MathSciNet  MATH  Google Scholar 

  78. Felmer, P. L., Heteroclinic orbits for spatially periodic Hamiltonian systems, Analyse nonlin. IHP 8, 1991, 477–497.

    MathSciNet  MATH  Google Scholar 

  79. Fonda, A. and J. Mawhin, Multiple periodic solutions of conservative systems with periodic nonlinearity, preprint.

    Google Scholar 

  80. Felmer, P. L. and E. Silva, Subharmonics near an equilibrium for some second order Hamiltonian systems, (to appear) Proc. Royal Soc. Edinburgh.

    Google Scholar 

  81. Fournier, G. and M. Willem, Multiple solutions of the forced double pendulum problem, preprint.

    Google Scholar 

  82. Ghoussoub, N., Duality and Perturbation Methods in Critical Point Theory, preprint.

    Google Scholar 

  83. Giannoni, F., Periodic solutions of dynamical systems by a Saddle Point Theorem of Rabinowitz, Nonlinear Analysis TMA 13, 1989, 707–719.

    MathSciNet  MATH  Google Scholar 

  84. Giannoni, F., On the existence of homoclinic orbits on Riemannian manifolds, preprint.

    Google Scholar 

  85. Girardi, M. and M. Matseu, Some results on solutions of minimal period to superquadratic Hamiltonian equations, Nonlinear Analysis TMA 7, 1983, 475–482.

    MATH  Google Scholar 

  86. Girardi, M. and M. Matseu, Solutions of minimal period for a class of nonconvex Hamiltonian systems and applications to the fixed energy problem, Nonlinear Analysis TMA 10, 1986, 371–382.

    MATH  Google Scholar 

  87. Girardi, M. and M. Matseu, Periodic solutions of convex Hamiltonian systems with a quadratic growth at the origin and superquadratic at infinity, Ann. Mat. Pura. Appl. 147, 1987, 21–72.

    MathSciNet  MATH  Google Scholar 

  88. Ghoussoub, N. and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. IHP - Analyse nonlin. 6, 1989, 321–330.

    MathSciNet  MATH  Google Scholar 

  89. Girardi, M., Multiple orbits for Hamiltonian systems on starshaped surfaces with symmetries, Ann. IHP - Analyse nonlin. 1, 1984, 285–294.

    MathSciNet  MATH  Google Scholar 

  90. Giannoni, F. and P. H. Rabinowitz, On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems, (to appear) Nonlin. Diff. Eq. and Appl.

    Google Scholar 

  91. Han, Z., Periodic solutions of a class of dynamical systems of second order, J. Diff. Eq. 90, 1991, 408–417.

    MATH  Google Scholar 

  92. Hofer, H., A geometric description of the neighborhood of a critical point given by the Mountain Pass Theorem, J. London Math. Soc. (2) 31, 1985, 566–570.

    MathSciNet  MATH  Google Scholar 

  93. Hofer, H., A note on the topological degree at a critical point of mountain pass type, Proc. AMS 49, 1984, 309–315.

    MathSciNet  Google Scholar 

  94. Hofer, H., Variational and topological methods in partially ordered spaces, Math. Ann. 261, 1982, 493–514.

    MathSciNet  MATH  Google Scholar 

  95. Hofer, H., On strongly indefinite functionals with applications, Trans. Amer. Math. Soc. 275, 1983, 185–214.

    MathSciNet  MATH  Google Scholar 

  96. Hofer, H. and C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, preprint.

    Google Scholar 

  97. Hofer, H. and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, preprint.

    Google Scholar 

  98. Hofer, H. and E. Zehnder, A new capacity for symplectic manifolds, Analysis, et cetera (P. Rabinowitz and E. Zehnder eds.) Academic Press, 1990, 405–428.

    Google Scholar 

  99. Hofer, H. and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math. 90, 1987, 1–9.

    MathSciNet  MATH  Google Scholar 

  100. Krasnoselski, M. A., Topological methods in the theory of nonlinear integral equations, Macmillan, New York, 1964.

    Google Scholar 

  101. Kirchgraber, U. and D. Stoffer, Chaotic behavior in simple dynamical systems, SIAM Review 32, 1990, 424–452.

    MathSciNet  MATH  Google Scholar 

  102. Kozlov, V. V., Calculus of variations in the large and classical mechanics, Russ. Math. Surv. 40, 1985, 37–71.

    MATH  Google Scholar 

  103. Lassoued, L., Periodic solutions of a second order superquadratic system with a change in sign in the potential, J. Diff. Eq. 93, 1991, 1–18.

    MathSciNet  MATH  Google Scholar 

  104. Lazer, A. and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of Minimax type, Nonlinear Analysis TMA 12, 1988, 761–775.

    MathSciNet  MATH  Google Scholar 

  105. Liu, J. Q., A generalized saddle point theorem, J. Diff. Eq., 1989.

    Google Scholar 

  106. Li, S. and J. Liu, Some existence theorems on multiple critical points and their applications, Kexue Tonghao 17, 1984.

    Google Scholar 

  107. Long, Y., The minimal period problem of periodic solutions for autonomous superquadratic second order Hamiltonian systems, (to appear) J. Diff. Eq.

    Google Scholar 

  108. Long, Y., The minimal period problem for even autonomous super-quadratic second order Hamiltonian systems, preprint, 1992.

    Google Scholar 

  109. Long, Y., Periodic solutions of perturbed superquadratic Hamiltonian systems, Ann. Sc. Norm. Sup. Pisa, Ser 4, 17, 1990, 35–77.

    MATH  Google Scholar 

  110. Long, Y., Periodic solutions of superquadratic Hamiltonian systems with bounded forcing terms, Math. Z. 203, 1990, 453–467.

    MathSciNet  MATH  Google Scholar 

  111. Long, Y., Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. AMS 311, 1989, 749–780.

    MATH  Google Scholar 

  112. Long, Y., A Maslov-type index theory and asymptotically linear Hamiltonian systems, Dynamical Systems and Related Topics, K. Shirawa, ed., World Scientific, 1991, 333–341.

    Google Scholar 

  113. Lions, P. L., The concentration-compactness principle in the calculus of variations, Ann. IHP - Analyse nonlin. 1, 1984, 101–145.

    Google Scholar 

  114. Ljusternik, L. and L. Schnirelmann, Methodes topologique dans les problémes variationnels, Hermann and Cie, Paris, 1934.

    Google Scholar 

  115. Li, S. and M. Willem, Applications of local linking to critical point theory, preprint.

    Google Scholar 

  116. Li, Y. Y., On -Δu = K(x)u 5 in3, (to appear) Comm. Pure Appl. Math.

    Google Scholar 

  117. Long, Y. and E. Zehnder, Morse Theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic processes, Physics, and Geometry, S. Albevario et al. ed., World Scientific, 1990, 528–563.

    Google Scholar 

  118. Mather, J., Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207, 1991, 169–207.

    MathSciNet  MATH  Google Scholar 

  119. Mawhin, J., Periodic solutions of ordinary differential equations: the Poincaré’ heritage, Differential Topology-Geometry and Related Fields, (Russian ed.), Teubner, 1985, 287–307.

    Google Scholar 

  120. Mawhin, J. and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.

    MATH  Google Scholar 

  121. Nirenberg, L., Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 4, 1981, 267–302.

    MathSciNet  MATH  Google Scholar 

  122. Ni, W. M., Some minimax principles and their applications in nonlinear elliptic equations, J. Analyse Math. 37, 1980, 248–275.

    MathSciNet  MATH  Google Scholar 

  123. Offin, D., A class of periodic orbits in classical mechanics, J. Diff. Eq. 66, 1987, 90–117.

    MathSciNet  MATH  Google Scholar 

  124. Palais, R. S., Critical point theory and the minimax principle, Proc. Sympos. Pure Math., vol. 15, Amer. Math. Soc., Providence, R. I., 1970, 185–212.

    Google Scholar 

  125. Palais, R. S., Lusternik-Schnirelmann theory on Banach manifolds, Topology 5, 1966, 115–132.

    MathSciNet  MATH  Google Scholar 

  126. Palais, R. S. and S. Smale, A generalized Morse Theory, Bull. AMS 70, 1964, 165–171.

    MathSciNet  MATH  Google Scholar 

  127. Pucci, P. and J. Serrin, Extensions of the mountain pass theorem, J. Funct. Analysis 59, 1984, 185–210.

    MathSciNet  MATH  Google Scholar 

  128. Pucci, P. and J. Serrin, The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc. 299, 1987, 115–132.

    MathSciNet  MATH  Google Scholar 

  129. Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in Math. 65, 1986.

    Google Scholar 

  130. Rabinowitz, P. H., Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal 13, 1982, 343–352.

    MathSciNet  MATH  Google Scholar 

  131. Rabinowitz, P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31, 1978, 157–184.

    MathSciNet  Google Scholar 

  132. Rabinowitz, P. H., On a theorem of Hofer and Zehnder, Periodic Solutions of Hamiltonian systems and Related Topics, P. H. Rabinowitz et. al. eds., D. Reidel, 1987, 245–253.

    Google Scholar 

  133. Rabinowitz, P. H., Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations 50, 1983, 33–48.

    MathSciNet  MATH  Google Scholar 

  134. Rabinowitz, P. H., On a class of functionals invariant under an action, Trans. AMS 310, 1988, 303–311.

    MathSciNet  MATH  Google Scholar 

  135. Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edin. 114A, 1990, 33–38.

    MathSciNet  Google Scholar 

  136. Rabinowitz, P. H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. IHP-Analyse nonlin. 6, 1989, 331–346.

    MathSciNet  MATH  Google Scholar 

  137. Rabinowitz, P. H., Some recent results on heteroclinic and other connecting orbits of Hamiltonian systems, (to appear) Proc. Conf. on Variational Methods in Hamiltonian Systems and Elliptic Equations.

    Google Scholar 

  138. Rabinowitz, P. H., A variational approach to heteroclinic orbits for a class of Hamiltonian systems, Frontiers in Pure and Applied Mathematics, R. Dautray ed., 1991, 267–278.

    Google Scholar 

  139. Rabinowitz, P. H., Homoclinic and heteroclinic orbits for a class of Hamiltonian systems, Calculus of Var. 1, 1993, 1–36.

    MathSciNet  MATH  Google Scholar 

  140. Rabinowitz, P. H., Heteroclinics for a reversible Hamiltonian system, preprint, 1993.

    Google Scholar 

  141. Rabinowitz, P. H. and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z. 206, 1991, 473–499.

    MathSciNet  MATH  Google Scholar 

  142. Schwartz, J. T., Generalizing the Lusternik-Schnirelmann theory of critical points, Comm. Pure Appl. Math. 17, 1964, 307–315.

    MathSciNet  MATH  Google Scholar 

  143. Schwartz, J. T., Nonlinear functional analysis, Gordon & Breach, New York, 1969.

    MATH  Google Scholar 

  144. Schechter, M., A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331, 1992, 681–704.

    MathSciNet  MATH  Google Scholar 

  145. Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209, 1992, 27–42.

    MathSciNet  MATH  Google Scholar 

  146. Séré, E., Looking for the Bernoulli shift, preprint.

    Google Scholar 

  147. Séré, E., Homoclinic orbits on compact hypersurfaces inn of restricted contact type, preprint.

    Google Scholar 

  148. Seifert, H., Periodische Bewegungen mechanischer systeme, Math. Z. 51, 1948, 197–216.

    MathSciNet  MATH  Google Scholar 

  149. Silva, E., Critical point theorems and applications to differential equations, thesis, University of Wisconsin-Madison, 1988.

    Google Scholar 

  150. Silva, E., Linking theorems and applications to nonlinear elliptic equations at resonance, Nonlinear Analysis: TMA 16, 1991, 455–477.

    MATH  Google Scholar 

  151. Struwe, M., Variational Methods and their Applications to Partial Differential Equations and Hamiltonian Systems, Springer, 1990.

    Google Scholar 

  152. Struwe, M., Existence of periodic solutions of Hamiltonian systems on almost every energy surface, preprint.

    Google Scholar 

  153. Schechter, M. and C. Tintarov, Pairs of critical points produced by linking subsets with applications to semilinear elliptic problems, Bull. Soc. Math. Belg. 44, 1992, 249–261.

    MATH  Google Scholar 

  154. Sacks, P. and K. Uhlenbeck, On the existence of minimal immersions of 2-spheres, Ann. of Math. 113, 1981, 1–24.

    MathSciNet  MATH  Google Scholar 

  155. Szulkin, A., Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. SMF, 1988.

    Google Scholar 

  156. Tanaka, K., Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. PDE 14, 1989, 99–128.

    MATH  Google Scholar 

  157. Tanaka, K., Homoclinic orbits in a first order Hamiltonian system: Convergence of subharmonic orbits, Ann. IHP - Analyse nonlin. (to appear).

    Google Scholar 

  158. Viterbo, C., A proof of the Weinstein conjecture in2n, Ann. IHP - Analyse nonlin. 4, 1987, 337–356.

    MathSciNet  MATH  Google Scholar 

  159. van Groesen, E. W. C., Existence of multiple normal mode trajectories on convex energy surfaces of even classical Hamiltonian systems, J. Differential Equations 57, 1985, 70–89.

    MathSciNet  MATH  Google Scholar 

  160. Weinstein, A., On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Diff. Eq. 33, 1979, 353–358.

    MATH  Google Scholar 

  161. Weinstein, A., Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108, 1978, 507–518.

    MathSciNet  MATH  Google Scholar 

  162. Weinstein, A., Normal modes for nonlinear Hamiltonian systems, Inv. Math. 20, 1973, 45–57.

    Google Scholar 

  163. Willem, M., Subharmonic oscillations of convex Hamiltonian systems, J. Nonlinear Anal. 9, 1985, 1303–1311.

    MathSciNet  MATH  Google Scholar 

  164. Zehnder, E., Periodische Losungen von Hamiltonishe Systemen, Jahresber. Deutsch. Math. - Verein 89, N1, 1987, 33–59.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this chapter

Cite this chapter

Rabinowitz, P.H. (1995). Critical Point Theory and Applications to Differential Equations: A Survey. In: Matzeu, M., Vignoli, A. (eds) Topological Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 15. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2570-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2570-6_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7584-8

  • Online ISBN: 978-1-4612-2570-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics