Skip to main content

Bounded Arithmetic and Lower Bounds in Boolean Complexity

  • Conference paper
Feasible Mathematics II

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 13))

Abstract

We study the question of provability of lower bounds on the complexity of explicitly given Boolean functions in weak fragments of Peano Arithmetic. To that end, we analyze what is the right fragment capturing the kind of techniques existing in Boolean complexity at present. We give both formal and informal arguments supporting the claim that a conceivable answer is V 11 (which, in view of RSUV-isomorphism, is equivalent to S 12 ), although some major results about the complexity of Boolean functions can be proved in (presumably) weaker subsystems like U 11 . As a by-product of this analysis, we give a more constructive version of the proof of Håstad Switching Lemma which probably is interesting in its own right.

We also present, in a uniform way, theories which do not involve second order quantifiers and show that they prove the same \(\Sigma _0^{1,b}\)-theorems as V 1 k , U 1 k (k ≥ 1). Another application of this technique is that the schemes of \(\Sigma _0^{1,b}\)-replacement, \(\Sigma _0^{1,b}\) - I N D and \(\Sigma _0^{1,b}\) limited iterated comprehension (all of which are given by Boolean combinations of \(\Sigma _1^{1,b}\)-formulae) together prove all \(\left( {\Sigma _1^{1,b}} \right)\)-consequences of the full \(\Sigma _0^{1,b}\) - I N D scheme.

Supported by the grant # 93-011-16015 of the Russian Foundation for Fundamental Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. \(\Sigma_1^1\)-formulae on finite structures. Annals of Pure and Applied Logic, 24: 1 – 48, May 1983.

    Article  Google Scholar 

  2. B. Allen. Arithmetizing uniform NC. Annals of Pure and Applied Logic, 53 (1): 1 – 50, 1991.

    Article  Google Scholar 

  3. N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions. Combinatorica, 7 (1): 1 – 22, 1987.

    Article  Google Scholar 

  4. D. A. Barrington. A note on a theorem of Razborov. Technical report, University of Massachusetts, 1986.

    Google Scholar 

  5. R. B. Boppana and M. Sipser. The complexity of finite functions. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, vol. A (Algorithms and Complexity), chapter 14, pages 757–804. Elsevier Science Publishers B.V. and The MIT Press, 1990.

    Google Scholar 

  6. S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

    Google Scholar 

  7. P. Clote. A first-order theory for the parallel complexity class NC. Technical Report BCCS-89-01, Boston College, January 1989. Published in expanded form jointly with G. Takeuti in “Arithmetics for NC, ALOGTIME, Land NL”, Annals of Pure and Applied Logic, 56 (1992), 73 – 117.

    Article  Google Scholar 

  8. S. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings of the 7th Annual ACM Symposium on the Theory of Computing, pages 83–97, 1975.

    Google Scholar 

  9. M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy. Math. Syst. Theory, 17: 13 – 27, 1984.

    Article  Google Scholar 

  10. P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer-Verlag, 1993.

    Google Scholar 

  11. J. Håstad. Computational limitations on Small Depth Circuits. PhD thesis, Massachusetts Institute of Technology, 1986.

    Google Scholar 

  12. M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic depth. SIAM J. on Disc. Math., 3 (2): 255 – 265, May 1990.

    Article  Google Scholar 

  13. J. Krajíček. Bounded arithmetic, propositional logic and complexity theory. Cambridge University Press, 1994.

    Google Scholar 

  14. J. Krajíček, P. Pudlák, and A. R. Woods. Exponential lower bounds to the size of bounded depth frege proofs of the pigeonhole principle. Submitted to Random Structures and Algorithms, 1993.

    Google Scholar 

  15. K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica, 7 (1): 101 – 104, 1987.

    Article  Google Scholar 

  16. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. In Proceedings of the22th ACM STOC, pages 213–223, 1990.

    Google Scholar 

  17. J. B. Paris, A. J. Wilkie, and A. R. Woods. Provability of the pigeonhole principle and the existence of infinitely many primes. Journal of Symbolic Logic, 53 (4): 1235 – 1244, 1988.

    Google Scholar 

  18. R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. In Proceedings of the22th Ann. ACM Symposium on the Theory of Computing, pages 287–292, 1990.

    Google Scholar 

  19. A. Razborov. Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica, 10 (l): 81 – 93, 1990.

    Article  Google Scholar 

  20. A. Razborov. An equivalence between second order bounded domain bounded arithmetic and first order bounded arithmetic. In P. Clote and J. Krajíček, editors, Arithmetic, Proof Theory and Computational Complexity, pages 247–277. Oxford University Press, 1992.

    Google Scholar 

  21. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of Bounded Arithmetic. To appear in Izvestiya of the RAN, 1994.

    Google Scholar 

  22. A. Razborov and S. Rudich. Natural proofs. In Proceedings of the26th ACM Symposium on Theory of Computing, pages 204–213, 1994.

    Google Scholar 

  23. J. Riordan and C. E. Shannon. The number of two-terminal series parallel networks. J. Math. Phys., 21 (2): 83 – 93, 1942.

    Google Scholar 

  24. R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the 19th ACM Symposium on Theory of Computing, pages 77–82, 1987.

    Google Scholar 

  25. G. Takeuti. S 3 iand V 2 i(BD). Archive for Math. Logic, 29: 149 – 169, 1990.

    Article  Google Scholar 

  26. G. Takeuti. RSUVisomorphism. In P. Clote and J. Krajíček, editors, Arithmetic, Proof Theory and Computational Complexity, pages 364–386. Oxford University Press, 1992.

    Google Scholar 

  27. É. Tardos. The gap between monotone and nonmonotone circuit complexity is exponential. Combinatorica, 8: 141 – 142, 1988.

    Article  Google Scholar 

  28. A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the26th IEEE FOCS, pages 1–10, 1985.

    Google Scholar 

  29. A.E. Андреев. Об одном методе цолучения нижних ценк сложноси индивидуальных монотонных функций. дАН CCCP, 282(5):1033–1037, 1985. A.E. Andreev, On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl.31(3):530–534, 1985.

    Google Scholar 

  30. A.E. Андреев. Об одном методе цолучения Эффективн нижних оленок монотоннй сложности. AлϨебра u лоϨuxа26(1):3–21, 1987. A.E. Andreev, On one method of obtaining effective lower bounds of monotone complexity. Algebra i logika, 26(1):3–21, 1987. In Russian.

    Google Scholar 

  31. A. A. Марков. О минималых контактно-вентилвных духцолюсниках для монотонных симметрических функций. In Проблемы кuбернмuкu, volume 8, pages 117–121. Hayna, 1962. A. A. Markov, On minimal switching-and-rectifier networks for monotone symmetric functions, Problems of Cybernetics, vol. 8, 117–121 (1962).

    Google Scholar 

  32. Э. И. Нечипорук. Об одной булевской функции. дАН CCCP, 169(4):765–766, 1966. E. I. Nečiporuk, On a Boolean function, Soviet Mathematics Doklady 7:4, pages 999–1000.

    Google Scholar 

  33. A. A. Разборов. Нижние оценки монотонной сложности некотоых булевых функций. дАН CCCP, 281(4):798–801, 1985. A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions, Soviet Math. Dokl., 31: 354 – 357, 1985.

    Google Scholar 

  34. A. A. Разборов. Нижние оценки монотонной сложности логического перманета. Маmем. Зам., 37(6):887–900, 1985. A. A. Razborov, Lower bounds of monotone complexity of the logical permanent function, Mathem. Notes of the Academy of Sci. of the USSR, 37: 485 – 493, 1985.

    Article  Google Scholar 

  35. A. A. Разборов. Нижние оценки размера схем ограниченной глубины в полном базисе, содержащем функцию логического сложения. Маmем. Зам., 41(4):598–607, 1987. A. A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition, Mathem. Notes of the Academy of Sci. of the USSR, 41 (4): 333 – 338, 1987.

    Article  Google Scholar 

  36. Б. А. Субботовская. О реализации линейных функций формулами в базисе &, V, -. дАН CCCP, 136(3):553–555, 1961. B. A. Subbotovskaya, Realizations of linear functions by formulas using +,*, -, Soviet Mathematics Doklady2 (1961), 110 – 112.

    Google Scholar 

  37. B. M. Xрапченко. О сложности реализации линейной функции в классе П-схeм. Маmем. Замеmкu, 9(l):35–40, 1971. V.M. Khrapchenko, Complexity of the realization of a linear function in the class of π-circuits, Math. Notes Acad. Sciences USSR9 (1971), 21 – 23.

    Article  Google Scholar 

  38. B. M. Xрапченко. Об одном методе получения нижних оценок сложности П-схeм. Маmем. Замеmкu, 10(l):83–92, 1971. V.M. Khrapchenko, A method of determining lower bounds for the complexity of П-schemes, Math. Notes Acad. Sciences USSR10 (1971), 474 – 479.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this paper

Cite this paper

Razborov, A.A. (1995). Bounded Arithmetic and Lower Bounds in Boolean Complexity. In: Clote, P., Remmel, J.B. (eds) Feasible Mathematics II. Progress in Computer Science and Applied Logic, vol 13. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2566-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2566-9_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7582-4

  • Online ISBN: 978-1-4612-2566-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics