Skip to main content

Multitype Contact Branching Processes

  • Conference paper
Branching Processes

Part of the book series: Lecture Notes in Statistics ((LNS,volume 99))

  • 395 Accesses

Abstract

Connections exist between n-type contact branching processes and deterministic models for spatial epidemics. Let the position of the furthest individual in a contact branching process from position 0 at time t in a given direction be denoted by U(t). Define \(y_i(s,t) = P[U(t) > s| \ \textup{one} \ \textup{type} \ i \ \textup<Subscript>dividual</Subscript> \ \textup{at} \ \textup{position} \ 0 \ \textup{at} \ \textup{time} \ t = 0]\). This paper discusses how the methodology developed for considering the asymptotic speed of propagation of infection in n-type spatial epidemics can be modified to look at the behaviour of y i(s,t). This leads in certain cases to a proof of the result that U(t)/t converges in probability to c 0, the minimum speed for which wave solutions exist in a particular system of equations. The application of an approximate saddle point method to more general contact branching processes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson, D. G. & Weinberger, H. F. (1975), Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Goldstein, J. A. (ed.) Partial differential equations and related topics, Lect. Notes Math., No 446. Springer, Berlin, Heidelberg, New York. 5–49.

    Chapter  Google Scholar 

  • Aronson, D. G. & Weinberger, H. F. (1978), Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 30, 33–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Biggins, J. D. (1978), The asymptotic shape of the branching random walk. Adv. Appl. Prob., 10, 62–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Daniels, H. E. (1975), The deterministic spread of a simple epidemic. Perspectives in Probability and Statistics: Papers in Honour of M. S. Bartlett, Gani J. (ed.) Distributed for Applied Probability Trust by Academic Press, London. pp. 689–701.

    Google Scholar 

  • Daniels, H. E. (1977), The advancing wave in a spatial birth process. J. Appl. Prob., 14, 689–701.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O. (1978), Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Equations 33, 58–73.

    Article  MathSciNet  Google Scholar 

  • Diekmann, O. & Kaper, H. G. (1978), On the bounded solutions of a nonlinear convolution equation. Nonlin. Anal. Theory Appl., 2, 721–737.

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R. (1982a), A nonlinear integral operator arising from a model in population genetics, I. monotone initial data. SIAM J. Math. Anal., 13 913–937.

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R. (1982b), A nonlinear integral operator arising from a model in population genetics, II. initial data with compact support. SIAM J. Math. Anal., 13 938–953.

    Article  MathSciNet  MATH  Google Scholar 

  • McKean, H. P. (1975), Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piscunov. Commun. Pure Appl. Maths., 28, 323–331.

    Article  MathSciNet  MATH  Google Scholar 

  • Mollison, D. M. (1977), Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc. B., 39, 283–326.

    MathSciNet  MATH  Google Scholar 

  • Mollison, D. M. (1978), Markovian contact processes. Adv. Appl. Prob., 10, 85–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Radcliffe J. & Rass, L. (1983), Wave solutions for the deterministic non-reducible n-type epidemic. J. Math. Biol., 17, 45–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Radcliffe, J. & Rass, L. (1984a), The uniqueness of wave solutions for the deterministic non-reducible n-type epidemic. J. Math. Biol., 19, 303–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Radcliffe, J. & Rass, L. (1984b), Saddle-point approximations in n-type epidemics and contact birth processes. Rocky Mountain J. Math., 14, 599–617.

    Article  MathSciNet  MATH  Google Scholar 

  • Radcliffe, J. & Rass, L. (1986), The asymptotic speed of propagation of the deterministic non-reducible n-type epidemic. J. Math. Biol., 23, 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Radcliffe, J. & Rass, L. (1991), The effect of reducibility on the deterministic spread of infection in a heterogeneous population. The Second International Conference on Mathematical Population Dynamics, Arino, O., Axelrod, D. E. and Rimmel M., (ed.) Lecture Notes in Pure and Applied Mathematics, Vol 131, Marcel Dekker, pp. 93–114.

    Google Scholar 

  • Radcliffe, J. & Rass, L. (1993), Reducible epidemics: choosing your saddle. Rocky Mountain J. Math., 23, 725–752.

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H. R. (1979a), Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine. Angew. Math., 306, 94–121.Thieme, H. R. (1979a), Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine. Angew. Math., 306, 94–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H. R. (1979b), Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J. Math. Biol., 8, 353–396.Thieme, H. R. (1979b), Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J. Math. Biol., 8, 353–396.

    Article  MathSciNet  Google Scholar 

  • Uchiyama, K. (1982), Spatial growth of a branching process of particles living in R d. Ann. Prob., 10, 896–918.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Radcliffe, J., Rass, L. (1995). Multitype Contact Branching Processes. In: Heyde, C.C. (eds) Branching Processes. Lecture Notes in Statistics, vol 99. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2558-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2558-4_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97989-2

  • Online ISBN: 978-1-4612-2558-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics