Skip to main content

The Bat Auditory Cortex

  • Chapter
Hearing by Bats

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 5))

Abstract

Situated as it is at the top of the hierarchy of nuclei comprising the auditory pathway, the auditory cortex should provide a wealth of information about higher order analysis of acoustic signals. The auditory cortex in bats is arguably the most intensively studied and best understood of all mammals. One species in particular, the mustached bat Pteronotus parnelli, has provided a wealth of detailed information about neuronal specialization and cortical organization. Despite these advances, many auditory neuro-scientists tend to dismiss bat auditory neurobiology as “out of the main-stream” because they view bats as highly specialized mammals, with only one form of acoustic behavior, echolocation (but see Pollak, Winer, and O’Neill, Chapter 10). Some authors (e.g., Clarey, Barone, and Imig 1992) have questioned the applicability of the bat model of cortical organization because of the perception that bat cortex is highly specialized to analyze only the few stereotyped sounds used in echolocation. Bat researchers have inadvertently reinforced this bias by focusing their efforts only on echolocation, while ignoring the rich acoustic signal structures that bats use for communication. Only recently has there been any attention paid to the processing of the astonishingly rich variety of communication sounds used by colonial bats in social interactions (Kanwal, Ohlemiller and Suga 1993; Kanwal et al. 1994; Ohlemiller, Kanwal, and Suga 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altes RA (1989) An interpretation of cortical maps in echolocating bats. J Acoust Soc Am 85:934–942.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma A, Wong D, Suga N (1983) Frequency and amplitude representations in anterior primary auditory cortex of the mustached bat. J Neurophysiol (Be-thesda) 50:1182–1196.

    CAS  Google Scholar 

  • Berkowitz A, Suga N (1989) Neural mechanisms of ranging are different in two species of bats. Hear Res 41:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Beuter KJ (1980) A new concept of echo evaluation in the auditory system of bats. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum, pp. 747–764.

    Google Scholar 

  • Bruns V (1976) Peripheral auditory tuning for fine frequency analysis of the CF-FM bat, Rhinolophusferrumequinum. II. Frequency mapping in the cochlea. J Comp Physiol A 106:87–97.

    Article  Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hear Res 3:27–43.

    Article  PubMed  CAS  Google Scholar 

  • Clarey JC, Barone P, Imig TJ (1992) Physiology of thalamus and cortex. In: Popper AN, Fay RR (eds) Springer Handbook of Auditory Research, Vol 2, The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 232–334.

    Chapter  Google Scholar 

  • Covey E, Johnson BR, Ehrlich D, Casseday JH (1993) Neural representation of the temporal features of sound undergoes transformation in the auditory midbrain: evidence from extracellular recording, application of pharmacological agents, and in vivo whole cell patch clamp recording. Soc Neurosci Abstr 19:535.

    Google Scholar 

  • Dear SP, Simmons JA, Fritz J (1993) A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat. Nature 364:620–623.

    Article  PubMed  CAS  Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol (Bethesda) 70:1988–2009.

    CAS  Google Scholar 

  • Duncan GE, Henson OW (1994) Brain activity patterns in flying, echolocating bats (Pteronotus parnellii): assessment by high resolution autoradiographic imaging with 3H-2-deoxyglucose. Neurosci 59:1051–1070.

    Article  CAS  Google Scholar 

  • Edamatsu H, Suga N (1993) Differences in response properties of neurons between two delay-tuned areas in the auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 69:1700–1712.

    CAS  Google Scholar 

  • Edamatsu H, Kawasaki M, Suga N (1989) Distribution of combination-sensitive neurons in the ventral fringe area of the auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 61:202–207.

    CAS  Google Scholar 

  • Feng AS, Simmons JA, Kick SA (1978) Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus. Science 202:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I (1987) The basic structure of the neocortex in insectivorous bats (Miniopterus sthreibersi and Pipistrelluspipistrellus). A Golgi study. J Hirnforsch 28:237–243.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick DC, Henson OW (1994) Cell types in the mustached bat auditory cortex. Brain Behav Evol 43:79–91.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DC, Kanwal JS, Butman JA, Suga N (1993) Combination-sensitive neurons in the primary auditory cortex of the mustached bat. J Neurosci 13:931–940.

    PubMed  CAS  Google Scholar 

  • Fritz JB, Olsen J, Suga N, Jones EG (1981) Connectional differences between auditory fields in a CF-FM bat. Soc Neurosci Abstr 7:391.

    Google Scholar 

  • Fuzessery ZM, Pollak GD (1984) Neural mechanisms of sound localization in an echolocating bat. Science 225:725–728.

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Pollak GD (1985) Determinants of sound location selectivity in bat inferior colliculus: a combined dichotic and free-field stimulation study. J Neurophysiol (Bethesda) 54:757–781.

    CAS  Google Scholar 

  • Fuzessery ZM, Hartley DJ, Wenstrup JJ (1992) Spatial processing within the mustache bat echolocation system: possible mechanisms for optimization. J Comp Physiol A 170:57–71.

    Article  PubMed  CAS  Google Scholar 

  • Goldman LJ, Henson OW (1977) Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav Biol Sociobiol 2:411–419.

    Article  Google Scholar 

  • Gooler DM, O’Neill WE (1987) Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus pomelli parnelli. J Comp Physiol A 161:283–294.

    Article  PubMed  CAS  Google Scholar 

  • Gooler DM, O’Neill WE (1988) Central control of frequency in biosonar emissions of the mustached bat. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum, pp. 265–270.

    Google Scholar 

  • Griffin DR (1958) Listening in the Dark. New Haven: Yale University Press.

    Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats. Anim Behav 19:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Griffin DR, Webster FA, Michael C (1960) The echolocation of flying insects by bats. Anim Behav 8:141–154.

    Article  Google Scholar 

  • Grinnell AD, Grinnell VS (1965) Neural correlates of vertical localization by echolocating bats. J Physiol 181:830–851.

    PubMed  CAS  Google Scholar 

  • Grinnell AD, Schnitzler H-U (1977) Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum. II. Behavioral directionality of hearing. J Comp Physiol A 116:63–76.

    Article  Google Scholar 

  • Habersetzer J, Vogler B (1983) Discrimination of surface structured targets by the echolocating bat Myotis myotis during flight. J Comp Physiol A 152:275–282.

    Article  Google Scholar 

  • Hartley DJ, Suthers RA (1989) The sound emission pattern of the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 85:1348–1351.

    Article  Google Scholar 

  • Hartley DJ, Suthers RA (1990) Sonar pulse radiation and filtering in the mustached bat, Pteronotus parnellii rubiginosus. J Acoust Soc Am 87:2756–2772.

    Article  Google Scholar 

  • Hawkins JE, Stevens SS (1950) The masking of pure tones and speech by white noise. J Acoust Soc Am 22:6–13.

    Article  Google Scholar 

  • Henson OW (1970) The central nervous system of Chiroptera. In: Wimsatt WA (ed) Biology of Bats. New York: Academic Press, pp. 57–152.

    Google Scholar 

  • Henson OW, Bishop A, Keating A, Kobler J, Henson M, Wilson B, Hansen R (1987) Biosonar imaging of insects by Pteronotusp. parnellii, the mustached bat. Natl Geogr Res 3:82–101.

    Google Scholar 

  • Imig TJ, Adrian HO (1977) Binaural columns in the primary field (AI) of cat auditory cortex. Brain Res 138:241–257.

    Article  PubMed  CAS  Google Scholar 

  • Jeffress (1948) A place theory of sound localization. J Comp Psychol 41:35–39.

    Article  CAS  Google Scholar 

  • Jen PHS, Chen D (1988) Directionality of sound pressure transformation at the pinna of echolocating bats. Hear Res 34:101–118.

    Article  PubMed  CAS  Google Scholar 

  • Jen PHS, Sun X, Lin PJJ (1989) Frequency and space representation in the primary auditory cortex of the frequency modulating bat Eptesicus fuscus. J Comp Physiol A 165:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Kanwal JS, Ohlemiller KK, Suga N (1993) Communication sounds of the mustached bat: classification and multidimensional analyses of call structure. Assoc Res Otolaryngol Abstr 16:111.

    Google Scholar 

  • Kanwal JS, Matsumura S, Ohlemiller KK, Suga N (1994) Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. J Acoust Soc Amer 96:1229–1254.

    Article  CAS  Google Scholar 

  • Kawasaki M, Margoliash D, Suga N (1988) Delay-tuned combination-sensitive neurons in the auditory cortex of the vocalizing mustached bat. J Neurophysiol (Bethesda) 59:623–635.

    CAS  Google Scholar 

  • Kelly JB, Judge PW, Phillips DP (1986) Representation of the cochlea in primary auditory cortex of the ferret. Hear Res 24:111–115.

    Article  PubMed  CAS  Google Scholar 

  • Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978) Space and frequency are represented seperately in auditory midbrain of the owl. J Neurophysiol (Bethesda) 41:870–884.

    CAS  Google Scholar 

  • Kober R (1988) Echoes of fluttering insects. In: Nachtigall PE, Moore PW (eds) Animal Sonar: Processes and Performance. New York: Plenum, pp. 477–482.

    Google Scholar 

  • Kober R, Schnitzler H-U (1990) Information in sonar echoes of fluttering insects available for echolocating bats. J Acoust Soc Am 87:882–895.

    Article  Google Scholar 

  • Kobler JB, Isbey SF, Casseday JH (1987) Auditory pathways to the frontal cortex of the mustache bat, Pteronotus parnellii. Science 236:824–826.

    Article  PubMed  CAS  Google Scholar 

  • Kobler JB, Wilson BS, Henson OW Jr, Bishop AL (1985) Echo intensity compensation by echolocating bats. Hear Res 20:99–108.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Takahashi TT, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates of sound localization in the owl. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 721–745.

    Google Scholar 

  • Lesser HD (1987) Encoding of amplitude-modulated sounds by single units in the inferior colliculus of the mustached bat, Pteronotus parnellii. Ph.D. Thesis, University of Rochester, Rochester, NY.

    Google Scholar 

  • Lesser HD, O’Neill WE, Frisina RD, Emerson RC (1990) ON-OFF units in the mustached bat inferior colliculus are selective for transients resembling “acoustic glint” from fluttering insect targets. Exp Brain Res 82:137–148.

    Article  PubMed  CAS  Google Scholar 

  • Link A, Marimuthu G, Neuweiler G (1986) Movement as a specific stimulus for prey catching behavior in rhinolophid and hipposiderid bats. J Comp Physiol A 159:403–413.

    Article  Google Scholar 

  • Maekawa M, Wong D, Paschal WG (1992) Spectral selectivity of FM-FM neurons in the auditory cortex of the echolocating bat, Myotis lucifugus. J Comp Physiol A 171:513–522.

    Article  PubMed  CAS  Google Scholar 

  • Makous JC, O’Neill WE (1986) Directional sensitivity of the auditory midbrain in the mustached bat to free-field tones. Hear Res 24:73–88..

    Article  PubMed  CAS  Google Scholar 

  • Manabe T, Suga N, Ostwald J (1978) Aural representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 200:339–342.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50;275–296.

    Article  PubMed  CAS  Google Scholar 

  • Metzner W (1993) An audiovocal interface in echolocating horseshoe bats. J Neurosci 13:1862–1878.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Dykes RW, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: Topographical organization orthogonal to isofrequency contours. Brain Res 181:31–48.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Schnitzler H-U (1990) Range resolution and the possible use of spectral information in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 88:754–757.

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G (1970) Neurophysiologische Untersuchungen zum Echoortungssystem der Grossen Hufeisennase Rhinolophus ferrumequinum Schreber. J Comp Physiol A 67:273–306.

    Google Scholar 

  • Neuweiler G, Metzner W, Heilmann U, Rubsamen R, Eckrich M, Costa HH (1987) Foraging behavior and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behav Ecol Sociobiol 20:53–67.

    Article  Google Scholar 

  • Novick A, Vaisnys JR (1964) Echolocation of flying insects by the bat, Chilonycteris parnellii. Biol Bull 127:478–488.

    Article  Google Scholar 

  • Ohlemiller KK, Kanwal JS, Suga N (1993) Do cortical auditory neurons of the mustached bat have a dual function for processing biosonar signals and communication sounds? Assoc Res Otolaryngol Abstr 16:111.

    Google Scholar 

  • Olsen JF (1986) Processing of biosonar information by the medial geniculate body of the mustached bat, Pteronotus parnellii. Ph.D. Thesis, Washington University, St. Louis, MO.

    Google Scholar 

  • Olsen JF, Suga N (1991a) Combination-sensitive neurons in the medial geniculate body of the mustached bat: Encoding of relative velocity information. J Neurophysiol (Bethesda) 65:1254–1274.

    CAS  Google Scholar 

  • Olsen JF, Suga N (1991b) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of target range information. J Neurophysiol (Bethesda) 65:1275–1296.

    CAS  Google Scholar 

  • O’Neill WE (1985) Responses to pure tones and linear FM components of the CF-FM biosonar signal by single units in the inferior colliculus of the mustached bat. J Comp Physiol A 157:797–815.

    Article  PubMed  Google Scholar 

  • O’Neill WE, Basham M (1992) Pulse-echo stimulus combinations can facilitate sonar signal vocalizations elicited by electrical stimulation of the anterior cingulate cortex in the mustache bat. In: Proceedings of Third International Congress of Neuroethology, Montreal, Quebec, CA, Aug 9–14, 1992. Soc for Neuroethology: p. 272.

    Google Scholar 

  • O’Neill WE, Suga N (1979) Target-range sensitive neurons in the auditory cortex of the mustached bat. Science 203:69–73.

    Article  PubMed  Google Scholar 

  • O’Neill WE, Suga N (1982) Encoding of target range and its representation in the auditory cortex of the mustached bat. J Neurosci 2:17–31.

    PubMed  Google Scholar 

  • O’Neill WE, Frisina RD, Gooler DM (1989) Functional organization of mustached bat inferior colliculus: I. Representation of FM frequency bands important for target ranging revealed by 14C-2-deoxyglucose autoradiography and single unit mapping. J Comp Neurol 284:60–84.

    Article  PubMed  Google Scholar 

  • Ostwald J (1980) The functional organization of the auditory cortex in the CF-FM bat Rhinolophus ferrumequinum. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum, pp. 953–956.

    Google Scholar 

  • Ostwald J (1984) Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the greater horseshoe bat. J Comp Physiol A 155:821–834.

    Article  Google Scholar 

  • Phillips DP, Judge PW, Kelly JB (1988) Primary auditory cortex in the ferret (Mustela putorius): neural response properties and topographic organization. Brain Res 443:281–294.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro AD, Wu M, Jen PH-S (1991) Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A 169:69–85.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD (1993) Some comments on the proposed perception of phase and nanosecond time disparities by echolocating bats. J Comp Physiol A 172:523–531.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD, Bodenhamer RD (1981) Specialized characteristics of single units in inferior colliculus of mustache bat: frequency representation, tuning, and discharge patterns. J Neurophysiol (Bethesda) 46:605–620.

    CAS  Google Scholar 

  • Pollak GD, Henson OW Jr, Johnson R (1979) Multiple specializations in the peripheral auditory system of the CF-FM bat, Pteronotus parnellii. J Comp Physiol 131:255–266.

    Article  Google Scholar 

  • Pollak GD, Henson OW Jr, Novick A (1972) Cochlear microphonic audiograms in the pure tone bat Chilonycteris parnellii parnellii. Science 176:66–68.

    Article  PubMed  CAS  Google Scholar 

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum, pp. 309–354.

    Google Scholar 

  • Reale RA, Imig TJ (1980) Tonotopic organization of auditory cortex in the cat. J Comp Neurol 192:265–291.

    Article  PubMed  CAS  Google Scholar 

  • Riquimaroux H, Gaioni SJ, Suga N (1991) Cortical computational maps control auditory perception. Science 251:565–568.

    Article  PubMed  CAS  Google Scholar 

  • Riquimaroux H, Gaioni SJ, Suga N (1992) Inactivation of DSCF area of the auditory cortex with muscimol disrupts frequency discrimination in the mustached bat. J Neurophysiol (Bethesda) 68:1613–1623.

    CAS  Google Scholar 

  • Sales G, Pye D (1974) Ultrasonic Communication by Animals. London: Chapman and Hall.

    Google Scholar 

  • Sanides F (1972) Representation in the cerebral cortex and its areal lamination patterns. In: Bourne GH (ed) The Structure and Function of the Nervous System. New York: Academic Press, pp. 329–453.

    Google Scholar 

  • Sanides D, Sanides F (1974) A comparative Golgi study of the neocortex in insectivores and rodents. Z Mikrosk Anat Forsch (Leipz) 88:957–977.

    CAS  Google Scholar 

  • Scharf B, Meiselman CH (1977) Critical bandwidth at high intensities. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 221–232.

    Google Scholar 

  • Schmidt S (1988) Evidence for spectral basis of texture perception in bat sonar. Nature 331:617–619.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisen-Fledermause (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z Vgl Physiol 57:376–408.

    Article  Google Scholar 

  • Schnitzler H-U (1970) Comparison of the echolocation behavior in Rhinolophus ferrum-equinum and Chilonycteris rubiginosa. Bijdr Dierkd 40:77–80.

    Google Scholar 

  • Schnitzler H-U, Menne D, Kober R, Heblich K (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology, Berlin: Springer-Verlag, pp. 235–250.

    Google Scholar 

  • Schreiner CD, Cynader MS (1984) Basic functional organization of second auditory cortical field (All) of the cat. J Neurophysiol (Bethesda) 51:1284–1305.

    CAS  Google Scholar 

  • Schreiner CE, Mendelson JR, Sutter ML (1992) Functional topography of cat primary auditory cortex: representation of tone intensity. Exp Brain Res 92:105–122.

    Article  PubMed  CAS  Google Scholar 

  • Schuller G (1974) The role of overlap of echo with outgoing echolocation sound in the bat Rhinolophus ferrumequinum. Naturwissenshaften 61:171–172.

    Article  Google Scholar 

  • Schuller G (1977) Echo delay and overlap with emitted orientation sounds and Doppler-shift compensation in the bat, Rhinolophus ferrumequinum. J Comp Physiol A 114:103–114.

    Article  Google Scholar 

  • Schuller G, Pollak GD (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: evidence for an acoustic fovea. J Comp Physiol 132:47–54.

    Article  Google Scholar 

  • Schuller G, Radtke-Schuller S (1990) Neural control of vocalization in bats: mapping of brainstem areas with electrical microstimulation eliciting species-specific echolocation calls in the rufous horseshoe bat. Exp Brain Res 79:192–206.

    Article  PubMed  CAS  Google Scholar 

  • Schuller G, O’Neill WE, Radtke-Schuller S (1991) Facilitation and delay sensitivity of auditory cortex neurons in CF-FM bats, Rhinolophus rouxi and Pteronotusp. parnellii. Eur J Neurosci 3: 1165–1181.

    Article  PubMed  Google Scholar 

  • Schuller G, Radtke-Schuller S, O’Neill WE (1988) Processing of paired biosonar signals in the cortices of Rhinolophus rouxi and Pteronotus parnellii. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum, pp. 259–264.

    Google Scholar 

  • Shamma SA, Symmes D (1985) Patterns of inhibition in auditory cortical cells in awake squirrel monkeys. Hear Res 19:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Shannon S, Wong D (1987) Interconnections between the medial geniculate body and the auditory cortex in an FM bat. Soc Neurosci Abstr 13:1469

    Google Scholar 

  • Shannon-Hartman S, Wong D, Maekawa M (1992) Processing of pure-tone and FM stimuli in the auditory cortex of the FM bat, Myotis lucifugus. Hear Res 61:179–188.

    Article  PubMed  CAS  Google Scholar 

  • Shimozawa T, Suga N, Hendler P, Schuetze S (1974) Directional sensitivity of echolocation system in bats producing frequency-modulated signals. J Exp Biol 60:53–69.

    PubMed  CAS  Google Scholar 

  • Simmons JA (1971) Echolocation in bats: signal processing of echoes for target range. Science 171:925–928.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1973) The resolution of target range by echolocating bats. J Acoust Soc Am 54:157–173.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Chen L (1989) The acoustic basis for target discrimination by FM echolocating bats. J Acoust Soc Am 86:1333–1350.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Stein RA (1980) Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. J Comp Physiol A 135:61–84.

    Article  Google Scholar 

  • Simmons JA, Fenton MB, O’Farrell MJ (1979) Echolocation and pursuit of prey by bats. Science 203:16–21.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Howell DJ, Suga N (1975) Information content of bat sonar echoes. Am Sci 63:204–215.

    PubMed  CAS  Google Scholar 

  • Simmons JA, Moss CF, Ferragamo M (1990) Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. J Comp Physiol A 166:449–470.

    PubMed  CAS  Google Scholar 

  • Simmons JA, Freedman EG, Stevenson SB, Chen L, Wohlgenant TJ (1989) Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 86:1318–1332.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1965a) Functional properites of auditory neurones in the cortex of echolocating bats. J Physiol 181:671–700.

    PubMed  CAS  Google Scholar 

  • Suga N (1965b) Responses of cortical auditory neurones to frequency-modulated sounds in echo-locating bats. Nature 206:890–891.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1977) Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 196:64–67.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1981) Neuroethology of the auditory system of echolocating bats. In: Katsuki Y, Norgren, Sato (eds) Brain Mechanisms of Sensation. New York: Wiley, pp. 45–60.

    Google Scholar 

  • Suga N (1982) Functional organization of the auditory cortex: Representation beyond tonotopy in the bat. In: Woolsey CN (ed) Cortical Sensory Organization, Vol 3, Multiple Auditory Areas. Clifton, NJ: Humana, pp. 157–218.

    Google Scholar 

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: Wiley, pp. 315–373.

    Google Scholar 

  • Suga N (1988a) Auditory neuroethology and speech processing: Complex sound processing by combination-sensitive neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 679–719.

    Google Scholar 

  • Suga N (1988b) What does single-unit analysis in the auditory cortex tell us about information processing in the auditory system? In: Rakic P, Singer W (eds) Neurobiology of Neocortex. New York: Wiley, pp. 331–349

    Google Scholar 

  • Suga N (1988c) Parallel-hierarchical processing of biosonar information in the mustached bat. In: Nachtigal PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum, pp. 149–159.

    Google Scholar 

  • Suga N (1990a) Cortical computational maps for auditory imaging. Neural Networks 3:3–21.

    Article  Google Scholar 

  • Suga N (1990b) Biosonar and neural computation in bats. Sci Amer 262:60–66

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Horikawa J (1986) Multiple time axes for representation of echo delay in the auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 55:776–805.

    CAS  Google Scholar 

  • Suga N, Jen PH (1976) Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science 194:542–544.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Jen PH (1977) Further studies on the peripheral auditory system of ‘CF-FM’ bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232.

    PubMed  CAS  Google Scholar 

  • Suga N, Manabe T (1982) Neural basis of amplitude-spectrum representation in auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 47:225–255.

    CAS  Google Scholar 

  • Suga N, O’Neill WE (1979) Neural axis representing target range in the auditory cortex of the mustached bat. Science 206:351–353.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1972) Neural attenuation of responses to emitted sounds in echolocating bats. Science 177:82–84.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Shimozawa T (1974) Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science 183:1211–1213.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Tsuzuki K (1985) Inhibition and level-tolerant frequency tuning in the auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 53:1109–1145.

    CAS  Google Scholar 

  • Suga N, Kawasaki M, Burkard RF (1990) Delay-tuned neurons in auditory cortex of mustached bat are not suited for processing directional information. J Neurophy- siol (Bethesda) 64:225–235.

    CAS  Google Scholar 

  • Suga N, Kuzirai K, O’Neill WE (1981) How biosonar information is represented in the bat cerebral cortex. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum, pp. 197–219.

    Google Scholar 

  • Suga N, Niwa H, Taniguchi I (1983) Representation of biosonar information in the auditory cortex of the mustached bat, with emphasis on representation of target velocity information. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in Vertebrate Neuroethology. New York: Plenum, pp. 829–867.

    Google Scholar 

  • Suga N, Olsen JF, Butman JA (1990) Specialized subsystems for processing biologically important complex sounds: Cross-correlation analysis for ranging in the bat’s brain. Cold Spring Harbor Symp Quant Biol 55:585–597.

    PubMed  CAS  Google Scholar 

  • Suga N, O’Neill WE, Manabe T (1978) Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustached bat. Science 200:778–781.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, O’Neill WE, Manabe T (1979) Harmonic-sensitive neurons in the auditory cortex of the mustache bat. Science 203:270–274.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Simmons JA, Jen PH-S (1975) Peripheral specialization for fine analysis of Doppler-shifted echoes in the auditory system of the “CF-FM” bat, Pteronotus parnellii. J Exp Biol 69:207–232.

    Google Scholar 

  • Suga N, Simmons JA, Shimozawa T (1974) Neurophysiological studies on echolocation systems in awake bats producing CF-FM orientation sounds. J Exp Biol 61:379–399.

    PubMed  CAS  Google Scholar 

  • Suga N, Niwa H, Taniguchi I, Margoliash D (1987) The personalized auditory cortex of the mustached bat: adaptation for echolocation. J Neurophysiol (Bethesda) 58:643–654.

    CAS  Google Scholar 

  • Suga N, O’Neill WE, Kujirai K, Manabe T (1983) Specificity of “combination sensitive” neurons for processing complex biosonar signals in the auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 49:1573–1626.

    CAS  Google Scholar 

  • Sullivan WE (1982a) Neural representation of target distance in auditory cortex of the echolocating bat Myotis lucifugus. J Neurophysiol (Bethesda) 48:1011–1032.

    Google Scholar 

  • Sullivan WE (1982b) Possible neural mechanisms of target distance coding in auditory system of the echolocating bat, Myotis lucifugus. J Neurophysiol (Bethesda) 48:1033–1047.

    Google Scholar 

  • Tanaka H, Wong D, Taniguchi I (1992) The influence of stimulus duration on the delay tuning of cortical neurons in the FM bat, Myotis lucifugus. J Comp Physiol A 171:29–40.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi I, Niwa H, Wong D, Suga N (1986) Response properties of FM - FM combination-sensitive neurons in the auditory cortex of the mustached bat. J Comp Physiol A 159:331–337.

    Article  PubMed  CAS  Google Scholar 

  • Teng H, Wong D Temporal and amplitude tuning of delay-sensitive neurons in the auditory cortex of Myotis lucifugus. J Neurophysiol (Bethesda) (in press).

    Google Scholar 

  • Trappe M, Schnitzler H-U (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenshaften 69:193–194.

    Article  Google Scholar 

  • Tunturi AR (1952) A difference in the representation of auditory signals for the left and right ears in the iso-frequency contours of the right middle ectosylvian auditory cortex of the dog. Am J Physiol 168: 712–727.

    PubMed  CAS  Google Scholar 

  • Wenstrupp JJ, Grose CD (1993) Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat. Soc Neurosci Abstr 19:1426.

    Google Scholar 

  • Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346:207–236.

    Article  PubMed  CAS  Google Scholar 

  • Wong D, Shannon SL (1988) Functional zones in the auditory cortex of the echolocating bat, Myotis lucifugus. Brain Res 453:349–352.

    Article  PubMed  CAS  Google Scholar 

  • Wong D, Maekawa M, Tanaka H (1992) The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus. J Comp Physiol A 170:393–402.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey CN (1960) Organization of cortical auditory system: A review and a synthesis. In: Rasmussen G, Windle W (eds) Neural Mechanisms of the Auditory and Vestibular Systems. Springfield: Thomas, pp. 165–180.

    Google Scholar 

  • Yang L, Pollak GD, Ressler C (1993) GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol (Bethesda) 68:1760–1774.

    Google Scholar 

  • Yin TCT, Chan JCK (1988) Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York, Wiley: pp. 385–430.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

O’Neill, W.E. (1995). The Bat Auditory Cortex. In: Popper, A.N., Fay, R.R. (eds) Hearing by Bats. Springer Handbook of Auditory Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2556-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2556-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7577-0

  • Online ISBN: 978-1-4612-2556-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics