Skip to main content

Auditory Dimensions of Acoustic Images in Echolocation

  • Chapter
Book cover Hearing by Bats

Abstract

Echolocation in bats is one of the most demanding adaptations of hearing to be found in any animal. Transforming the information carried by sounds into perceptual images depicting the location and identity of objects rapidly enough to control the decisions and reactions of a swiftly flying bat is a prodigious task for the auditory system to accomplish. The exaggeration of aspects of auditory function to achieve spatial imaging reflects the vital role of hearing in the lives of bats — for finding prey and perceiving obstacles to flight (Neuweiler 1990). It also highlights the mechanisms behind these functions to make echolocation a useful model for studying how the auditory system processes information and creates auditory perceptions in the most extreme circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altes RA (1980) Detection, estimation, and classification with spectrograms. J Acoust Soc Am 67:1232–1246.

    Article  Google Scholar 

  • Altes RA (1984) Texture analysis with spectrograms. IEEE Trans Sonics-Ultrasonics SU-31:407–417.

    Google Scholar 

  • Beuter KJ (1980) A new concept of echo evaluation in the auditory system of bats. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum, pp. 747–761.

    Google Scholar 

  • Bodenhamer RD, Pollak GD (1981) Time and frequency domain processing in the inferior colliculus of echolocating bats. Hear Res 5:317–355.

    Article  PubMed  CAS  Google Scholar 

  • Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J Neurosci 11: 3456–3470.

    PubMed  CAS  Google Scholar 

  • Dear SP, Simmons JA, Fritz J (1993) A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat. Nature 364:620–623.

    Article  PubMed  CAS  Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol 70:1988–2009.

    PubMed  CAS  Google Scholar 

  • Feng AS, Condon CJ, White KR (1994) Stroboscopic hearing as a mechanism for prey discrimination in FM bats? J Acoust Soc Am 95:2736–2744.

    Article  PubMed  CAS  Google Scholar 

  • Griffin DR (1958) Listening in the dark. New Haven: Yale University Press. (Reprinted by Cornell University Press, Ithaca, NY, 1986.)

    Google Scholar 

  • Griffin DR (1967) Discriminative echolocation by bats. In: Busnel RG (ed) Animal Sonar Systems: Biology and Bionics. France: Jouy-en-Josas-78, Laboratoire de Physiologie Acoustique, pp. 273–300.

    Google Scholar 

  • Griffin DR, Friend JH, Webster FA (1965) Target discrimination by the echolocation of bats. J Exp Zool 158:155–168.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell AD (1963) The neurophysiology of audition in bats: temporal parameters. J Physiol 167:67–96.

    PubMed  CAS  Google Scholar 

  • Grinnell AD (1967) Mechanisms of overcoming interference in echolocating animals. In: Busnel R-G (ed) Animal Sonar Systems: Biology and Bionics. France: Jouy-en-Josas-78, Laboratoire de Physiologie Acoustique, pp. 451–481.

    Google Scholar 

  • Grinnell AD, Griffin DR (1958) The sensitivity of echolocation in bats. Biol Bull 114:10–22.

    Article  Google Scholar 

  • Harnischpfeger G, Neuweiler G, Schlegel P (1985) Interaural time and intensity coding in the superior olivary complex and inferior colliculus of the echolocating bat, Molossus ater. J Neurophysiol 53:89–109.

    Google Scholar 

  • Hartley DJ (1992) Stabilization of perceived echo amplitudes in echolocating bats: II. The acoustic behavior of the big brown bat, Eptesicus fuscus, while tracking moving prey. J Acoust Soc Am 91:1133–1149.

    Article  PubMed  CAS  Google Scholar 

  • Hartley DJ, Suthers RA (1989) The sound emission pattern of the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 85:1348–1351.

    Article  Google Scholar 

  • Jen PH-S, Chen DM (1988) Directionality of sound pressure transformation at the pinna of echolocating bats. Hear Res 34:101–118

    Article  PubMed  CAS  Google Scholar 

  • Jen PH-S, Kamada T (1982) Analysis of orientation signals emitted by the CF-FM bat Pteronotusp. parnellii and the FM bat Eptesicus fuscus during avoidance of moving and stationary obstacles. J Comp Physiol 148:389–398.

    Article  Google Scholar 

  • Kick SA (1982) Target detection by the echolocating bat, Eptesicus fuscus, J Comp Physiol 145:431–435.

    Article  Google Scholar 

  • Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737.

    PubMed  CAS  Google Scholar 

  • Kober R, Schnitzler H-U (1990) Information in sonar echoes of fluttering insects available for echolocating bats. J Acoust Soc Am 87:874–881.

    Article  Google Scholar 

  • Kuc R (1994) Sensorimotor model of bat echolocation and prey capture. J Acoust Soc Am 96: 1965–1978.

    Article  PubMed  CAS  Google Scholar 

  • Kurta A, Baker RH (1990) Eptesicus fuscus. Mamm Species 356:1–10.

    Article  Google Scholar 

  • Lee DN, van der Weel FR, Hitchcock T, Matejowsky E, Pettigrew JD (1992) Common principle of guidance by echolocation and vision. J Comp Physiol A 171:563–571.

    Article  PubMed  CAS  Google Scholar 

  • Lhémery A, Raillon R (1994) Impulse-response method to predict echo responses from targets of complex geometry: II. Computer implementation and experimental validation. J Acoust Soc Am 95:1790–1800.

    Article  Google Scholar 

  • Masters WM, Moffat AJM, Simmons JA (1985) Sonar tracking of horizontally moving targets by the big brown bat, Eptesicus fuscus. Science 228:1331–1333.

    Article  PubMed  CAS  Google Scholar 

  • Menne D (1985) Theoretical limits of time resolution in narrow band neurons. In: Michelsen A (ed) Time Resolution in Auditory Systems. New York: Springer-Verlag, pp. 96–107.

    Google Scholar 

  • Menne D, Kaipf I, Wagner I, Ostwald J, Schnitzler HU (1989) Range estimation by echolocation in the bat Eptesicus fuscus: trading of phase versus time cues. J Acoust Soc Am 85:2642–2650.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Schnitzler H-U (1990) Range resolution and the possible use of spectral information in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 88:754–757.

    Article  PubMed  CAS  Google Scholar 

  • Moss CF, Schnitzler H-U (1989) Accuracy of target ranging in echolocating bats: acoustic information processing. J Comp Physiol A 165:383–393.

    Article  Google Scholar 

  • Moss CF, Simmons JA (1993) Acoustic image representation of a point target in the bat, Eptesicus fuscus: evidence for sensitivity to echo phase in bat sonar. J Acoust Soc Am 93:1553–1562.

    Article  PubMed  CAS  Google Scholar 

  • Moss CF, Zagaeski M (1994) Acoustic information available to bats using frequency-modulateci sounds for the perception of insect prey. J Acoust Soc Am 95:2745–2756.

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641.

    PubMed  CAS  Google Scholar 

  • Novick A (1977) Acoustic orientation. In: Wimsatt WA (ed) Biology of Bats, Vol. 3. New York: Academic Press, pp. 73–287.

    Google Scholar 

  • Pollak GD (1988) Time is traded for intensity in the bat’s auditory system. Hear Res 36:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD (1993) Some comments on the proposed perception of phase and nanosecond time disparities by echolocating bats. J Comp Physiol A 172:523–531.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. New York: Springer-Verlag.

    Google Scholar 

  • Pollak GD, Marsh DS, Bodenhamer R, Souther A (1977) Characteristics of phasic on neurons in inferior colliculus of unanesthetized bats with observations relating to mechanisms for echo ranging. J Neurophysiol 40:926–942.

    PubMed  CAS  Google Scholar 

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum, pp. 309–353.

    Google Scholar 

  • Roverud RC, Nitsche V, Neuweiler G (1991) Discrimination of wingbeat motion by bats, correlated with echolocation sound pattern. J Comp Physiol A 168:259–263.

    Article  PubMed  CAS  Google Scholar 

  • Saillant PA, Simmons JA, Dear SP, McMullen TA (1993) A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver. J Acoust Soc Am 94:2691–2712.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S (1992) Perception of structured phantom targets in the echolocating bat, Megaderma lyra. J Acoust Soc Am 91:2203–2223.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler H-U, Henson OW Jr (1980) Performance of airborne animal sonar systems: I. Microchiroptera. In: Busnel RG, Fish JF (eds) Animal Sonar systems. New York: Plenum, pp. 109–181.

    Google Scholar 

  • Schnitzler H-U, Menne D, Hackbarth H (1985) Range determination by measuring time delay in echolocating bats. In: Michelsen A (ed) Time Resolution in Auditory Systems. New York: Springer-Verlag, pp. 180–204.

    Google Scholar 

  • Simmons JA (1973) The resolution of target range by echolocating bats. J Acoust Soc Am 54:157–173.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1979) Perception of echo phase information in bat sonar. Science 207:1336–1338.

    Article  Google Scholar 

  • Simmons JA (1989) A view of the world through the bat’s ear: the formation of acoustic images in echolocation. Cognition 33:155–199.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1992) Time-frequency transforms and images of targets in the sonar of bats. In: Bialek W (ed) Princeton Lectures on Biophysics. River Edge, NJ: World Scientific, pp.291–319.

    Google Scholar 

  • Simmons JA (1993) Evidence for perception of fine echo delay and phase by the FM bat, Eptesicus fuscus. J Comp Physiol A 172:533–547.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Chen L (1989) The acoustic basis for target discrimination by FM echolocating bats. J Acoust Soc Am 86:1333–1350.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Grinnell AD (1988) The performance of echolocation: the acoustic images perceived by echolocating bats. In: Nachtigall P, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum, pp. 353–385.

    Google Scholar 

  • Simmons JA, Kick SA (1984) Physiological mechanisms for spatial filtering and image enhancement in the sonar of bats. Annu Rev Physiol 1984 46:599–614.

    Article  Google Scholar 

  • Simmons JA, Moss CF, Ferragamo M (1990) Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. J Comp Physiol A 166:449–470.

    PubMed  CAS  Google Scholar 

  • Simmons JA, Ferragamo M, Moss CF, Stevenson SB, Altes RA (1990) Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: the shape of target images in echolocation. J Comp Physiol A 167:589–616.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Freedman EG, Stevenson SB, Chen L, Wohlgenant TJ (1989) Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 86:1318–1332.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Kick SA, Lawrence BD, Hale C, Bard C, Escudié B (1983) Acuity of horizontal angle discrimination by the echolocating bat, Eptesicus fuscus. J Comp Physiol 153:321–330.

    Article  Google Scholar 

  • Simmons JA, Saillant PA, Ferragamo MJ, Haresign T, Dear SP, Fritz J, McMullen TA Auditory computations for biosonar target imaging in bats. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds) Auditory computation. New York, Springer-Verlag, (in press)

    Google Scholar 

  • Suga N (1964) Recovery cycles and responses to frequency modulated tone pulses in auditory neurons of echolocating bats. J Physiol 175:50–80.

    PubMed  CAS  Google Scholar 

  • Suga N (1967) Discussion (of presentation by O. W. Henson, Jr.). In: Busnel R-G (ed) Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, France: Jouy-en-Josas-78, pp. 1004–1020.

    Google Scholar 

  • Suga N, Schlegel P (1973) Coding and processing in the nervous system of FM signal producing bats. J Acoust Soc Am 84:174–190.

    Article  Google Scholar 

  • Sum YW, Menne D (1988) Discrimination of fluttering targets by the FM-bat Pipistrellus stenopterusl J Comp Physiol A 163:349–354.

    Article  Google Scholar 

  • Webster FA (1967) Performance of echolocating bats in the presence of interference. In: Busnel RG (ed) Animal Sonar Systems: Biology and Bionics. France: Jouy-en-Josas-78, Laboratoire de Physiologie Acoustique, pp. 673–713.

    Google Scholar 

  • Webster FA, Brazier OG (1965) Experimental studies on target detection, evaluation, and interception by echolocating bats. TDR No. AMRL-TR-65–172, Aerospace Medical Division, USAF Systems Command, Tucson, AZ.

    Google Scholar 

  • Webster FA, Griffin DR (1962) The role of the flight membrane in insect capture by bats. Anim Behav 10:332–340.

    Article  Google Scholar 

  • Wotton JM (1994) The basis for vertical sound localization of the FM bat, Eptesicus fuscus: acoustical cues and behavioral validation. Ph.D. dissertation, Brown University, Providence, RI.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Simmons, J.A. et al. (1995). Auditory Dimensions of Acoustic Images in Echolocation. In: Popper, A.N., Fay, R.R. (eds) Hearing by Bats. Springer Handbook of Auditory Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2556-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2556-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7577-0

  • Online ISBN: 978-1-4612-2556-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics