Skip to main content

Multivariate Walsh series, digital nets and quasi-Monte Carlo integration

  • Conference paper

Part of the book series: Lecture Notes in Statistics ((LNS,volume 106))

Abstract

Quite recently in a series of papers ([6], [11], [9], [10], [8]) a theory of the numerical integration of multivariate Walsh series by means of (t, m, s)-nets was developed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.L. Butzer and H.J. Wagner. Walsh-Fourier series and the concept of a derivative. Applicable Analysis, 3:29 – 46, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  2. H.E. Chrestenson. A class of generalized Walsh functions. Pacific J. Math., 5:17 – 31, 1955.

    MathSciNet  MATH  Google Scholar 

  3. H. Faure. Discrépance de suites associées à un systeme de numération (en dimension s). Acta Arith., 41:337 – 351, 1982.

    MathSciNet  MATH  Google Scholar 

  4. N.M. Korobov. Number-Theoretic Methods in Approximate Analysis. Fizmatgiz, Moscow, 1963. ( Russian).

    MATH  Google Scholar 

  5. L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley, New York, 1974.

    MATH  Google Scholar 

  6. G. Larcher. A class of low-discrepancy point-sets and its application to numerical integration by number-theoretical methods. In F.Halter-Koch and R.Tichy, editors, Österreichisch-Ungarisch-Slowakisches Kolloqium über Zahlentheorie, volume 318 of Grazer Math. Ber., pages 69 – 80, Graz, 1993. Karl-Franzens-Univ. Graz.

    Google Scholar 

  7. G. Larcher, A. Lauß, H. Niederreiter, and W.Ch. Schmid. Optimal polynomials for (t,m,s)-nets and numerical integration of multivariate Walsh series. To appear in: SIAM J. Numer. Analysis, 1995.

    Google Scholar 

  8. G. Larcher, H. Niederreiter, and W.Ch. Schmid. Digital nets and sequences con-structed over finite rings and their application to quasi-Monte Carlo integration. Submitted to: Monatsh. Math., 1995.

    Google Scholar 

  9. G. Larcher, W.Ch. Schmid, and R. Wolf. Representation of functions as Walsh series to different bases and an application to the numerical integration of high-dimensional Walsh series. Math. Comp., 63:701 – 716, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Larcher, W.Ch. Schmid, and R. Wolf. Quasi-Monte Carlo methods for the numerical integration of multivariate Walsh series. To appear in: Math. Comp. Modelling, 1995.

    Google Scholar 

  11. G. Larcher and C. Traunfellner. On the numerical integration of Walsh series by number-theoretic methods. Math. Comp., 63:277 – 291, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Niederreiter. Point sets and sequences with small discrepancy. Monatsh. Math., 104:273 – 337, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Niederreiter. Low-discrepancy and low-dispersion sequences. J. Number Theory, 30:51 – 70, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Number 63in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.

    Google Scholar 

  15. C.W. Onneweer. Differentiability for Rademacher series on groups. Acta Sci. Math., 39:121 – 128, 1977.

    MathSciNet  MATH  Google Scholar 

  16. R.E.A.C. Paley. A remarkable system of orthogonal functions. Proc. Lond. Math. Soc., 34:241 – 279, 1932.

    Article  Google Scholar 

  17. F. Schipp, W.R. Wade, and P. Simon. Walsh Series. An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol and New York, 1990.

    MATH  Google Scholar 

  18. I.M. Sobol’. The distribution of points in a cube and the approximate evaluation of integrals. Ž. Vyčisl. Mat. i Mat Fiz., 7:784 – 802, 1967. (Russian).

    MathSciNet  Google Scholar 

  19. Gerhard Wesp. A new and extensive table of good lattice points. Deliverable D5Z-1 of the CEI Project PACT, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Larcher, G., Schmid, W.C. (1995). Multivariate Walsh series, digital nets and quasi-Monte Carlo integration. In: Niederreiter, H., Shiue, P.JS. (eds) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2552-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2552-2_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94577-4

  • Online ISBN: 978-1-4612-2552-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics