Skip to main content

Collagen VI and Laminin as Markers of Differentiation of Endometrial Stroma

  • Conference paper
Molecular and Cellular Aspects of Periimplantation Processes

Abstract

In women, following menstrual shedding, the endometrium regenerates under the influence of estrogen to produce a densely cellular stroma containing narrow tubular glands and small blood vessels (Fig. 22.1). In addition to cellular proliferation, this requires the deposition of a scaffolding of extracellular matrix (ECM) into the often narrow intercellular spaces. The undifferentiated stroma produces an ECM of classically mesenchymal composition: Collagens I, III, V, and VI and fibronectin have all been shown to be present (1–3), and there are periglandular deposits of tenascin (4) that appear to reflect the proliferative state of the epithelial compartment. The epithelium and blood vessels are surrounded by basement membranes containing laminin, collagen type IV, and heparan sulfate proteoglycan (HSPG) (1–3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aplin JD, Charlton AK, Ayad S. An immunohistochemical study of human endometrial extracellular matrix during the menstrual cycle and first trimester of pregnancy. Cell Tissue Res 1988; 253: 231–40.

    Article  PubMed  CAS  Google Scholar 

  2. Aplin JD. Cellular biochemistry of the endometrium. In: Wynn RM, Jollie WP, eds. Biology of the uterus. New York: Plenum Medical, 1989: 89–129.

    Google Scholar 

  3. Aplin JD, Jones CJP. Extracellular matrix in endometrium and decidua. In: Genbacev O, Klopper A, Beaconsfield R, eds. Placenta as a model and a source. New York: Plenum Medical, 1989: 115–28.

    Chapter  Google Scholar 

  4. Vollmer G, Siegal GP, Chiquet-Ehrismann R, Lightner VA, Arnholdt H, Knuppen R. Tenascin expression in the human endometrium and in endometrial adenocarcinomas. Lab Invest 1990; 62: 725–30.

    PubMed  CAS  Google Scholar 

  5. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril 1950; 2: 3–25.

    Google Scholar 

  6. Hertig AT, Rock J, Adams J. A description of 34 human ova within the first 17 days of development. Am J Anat 1956; 98: 325–494.

    Article  Google Scholar 

  7. Aplin JD, Glasser SR. The interaction of trophoblast with endometrial stroma. In: Glasser SR, Mulholland J, Psychoyos A, eds. The endocrinology of embryo-endometrium interactions. New York: Plenum Medical, 1994.

    Google Scholar 

  8. Starkey PM, Sargent IL, Redman CWG. Cell population in human early pregnancy decidua: characterisation and isolation of large granular lymphocytes by flow cytometry. Immunology 1988; 65: 129–34.

    PubMed  CAS  Google Scholar 

  9. Bulmer JN, Ritson A, Pace D. Endometrial leucocytes in human pregnancy. In: Denker H-W, Aplin JD, eds. Trophoblast invasion and endometrial receptivity. Troph Res 1990; 4: 431–51.

    Google Scholar 

  10. Sheppard BL, Bonner J. Mast cells in the human uterus. In: Pepys J, Edwards AM, eds. The mast cell. London: Pitman Medical, 1979: 142–54.

    Google Scholar 

  11. Wewer UM, Faber M, Liotta LA, Albrechtsen R Immunochemical and ultrastructural assessment of the nature of the pericellular basement membrane of human decidual cells. Lab Invest 1985; 53: 624–33.

    PubMed  CAS  Google Scholar 

  12. Faber M, Wewer UM, Berthelsen JG, Liotta LA, Albrechtsen R Laminin production by human endometrial stromal cells relates to the cyclic and pathological state of the endometrium. Am J Pathol 1986; 124: 384–91.

    PubMed  CAS  Google Scholar 

  13. Kisalus LL, Herr JC, Little CD Immunolocalisation of extracellular matrix proteins and collagen synthesis in first-trimester human decidua. Anat Rec 1987; 218: 402–15.

    Article  PubMed  CAS  Google Scholar 

  14. Enders AC. Current topic: structural responses of the primate endometrium to implantation. Placenta 1991; 12: 309–25.

    Article  PubMed  CAS  Google Scholar 

  15. Wynn RM. Ultrastructural development of the human decidua. Am J Obstet Gynecol 1974; 118: 652–70.

    PubMed  CAS  Google Scholar 

  16. Kisalus LL, Herr JC. Immunocytochemical localisation of heparan sulphate proteoglycan in human decidual cell secretory bodies and placental fibrinoid. Biol Reprod 1988; 39: 419–30.

    Article  PubMed  CAS  Google Scholar 

  17. Wewer UM, Albrechtsen R, Fisher LW, Young MF, Termine JD. Osteonectin/SPARC/BM-40 in human decidua and carcinoma, tissues characterised by de novo formation of basement membrane. Am J Pathol 1988; 132: 345–55.

    PubMed  CAS  Google Scholar 

  18. Timpl R, Chu M-L. Microfibrillar collagen type V I. In: Yurchenco PD, Birk DE, Mecham RP, eds. Extracellular matrix assembly and structure. San Diego, CA: Academic Press, 1994.

    Google Scholar 

  19. Timpl R, Engel J. Type VI collagen. In: Mayne R, Burgeson RE, eds. Structure and function of collagen types. Orlando, FL: Academic Press, 1987: 105–43.

    Google Scholar 

  20. Kielty CM, Hopkinson I, Grant ME. The collagen family: structure assembly and organisation in the extracellular matrix. In: Royce PM, Steinmann B, eds. Connective tissue and its heritable disorders: molecular, genetic and medical aspects. New York: Wiley-Liss, 1992: 103–47.

    Google Scholar 

  21. Chu M-L, Mann K, Deutzmann R, et al. Characterisation of three constituent chains of collagen type VI by peptide sequences and cDNA clones. Eur J Biochem 1987; 168: 309–17.

    Article  PubMed  CAS  Google Scholar 

  22. Jander R, Rauterberg J, Glanville RW. Further characterisation of the three polypeptide chains of bovine and human short-chain collagen (intima collagen). Eur J Biochem 1983; 133: 39–46.

    Article  PubMed  CAS  Google Scholar 

  23. Trüeb B, Winterhalter KH. Type VI collagen is composed of a 200 kd subunit and two 140 kd subunits. EMBO J 1986; 5: 2815–9.

    PubMed  Google Scholar 

  24. Chu M-L, Zhang R-Z, Pan T-C, et al. Mosaic structure of globular domains in the human type VI collagen a3 chain: similarity to von Willebrand factor, fibronectin, actin, salivary proteins and aprotinin type protease inhibitors. EMBO J 1990; 9: 385–93.

    PubMed  CAS  Google Scholar 

  25. Chu M-L, Conway D, Pan T-C, Baldwin C, Mann K Amino acid sequence of the triple-helical domain of human collagen type VI. J Biol Chem 1988; 263: 18601–6.

    PubMed  CAS  Google Scholar 

  26. Saitta B, Wang Y-M, Renkart L, et al. The exon organisation of the triple-helical coding regions of the human al(VI) and a2(VI) collagen genes is highly similar. Genomics 1991; 11: 145–53.

    Article  PubMed  CAS  Google Scholar 

  27. Aumailley M, Mann K, Von der Mark H, Timpl R. Cell attachment properties of collagen type VI and Arg-Gly-Asp dependent binding to its a2(VI) and a3(VI) chains. Exp Cell Res 1989; 181: 463–74.

    Article  PubMed  CAS  Google Scholar 

  28. Kielty CM, Whittaker SP, Grant ME, Shuttleworth CA. Attachment of human vascular smooth muscle cells to intact microfibrillar assemblies of collagen VI and fibrillin. J Cell Sci 1992; 103: 445–51.

    PubMed  CAS  Google Scholar 

  29. Pfaff M, Aumailley M, Specks U, Knolle J, Zerwes HG, Timpl R. Integrin and RGD dependence of cell adhesion to the native and unfolded triple helix of collagen type VI. Exp Cell Res 1993; 206: 167–76.

    Article  PubMed  CAS  Google Scholar 

  30. Nishiyama A, Stallcup WB. Expression of NG2 proteoglycan causes retention of type VI collagen on the cell surface. Mol Cell Biol 1993; 4: 1097–108.

    CAS  Google Scholar 

  31. Perris R, Kuo HJ, Glanville RW, Leibold S, Bronner-Fraser M. Neural crest cell interaction with type VI collagen is mediated by multiple cooperative binding sites within triple helix and globular domains. Exp Cell Res 1993; 209: 103–17.

    Article  PubMed  CAS  Google Scholar 

  32. Chu M-L, Pan T-C, Conway D, et al. Sequence analysis of al(VI) and a2(VI) chains of human type VI collagen reveals internal triplication of globular domains similar to the A domains of von Willebrand factor and two a2(VI) chain variants that differ in the carboxy terminus. EMBO J 1989; 8: 1939–46.

    PubMed  CAS  Google Scholar 

  33. Bonaldo P, Colombatti A. The carboxyl terminus of the chicken a3 chain of collagen VI is a unique mosaic structure with glycoprotein Ib-like, fibronectin type III, and Kunitz modules. J Biol Chem 1989; 264: 20235–9.

    PubMed  CAS  Google Scholar 

  34. Bonaldo P, Russo V, Bucciotti F, Bressan GM, Colombatti A. al chain of chick type VI collagen. The complete cDNA sequence reveals a hybrid molecule made up of one short collagen and three von Willebrand factor type A-like domains. J Biol Chem 1989; 264: 5575–80.

    PubMed  CAS  Google Scholar 

  35. Koller E, Winterhalter KH, Trüeb B. The globular domains of type VI collagen are related to the collagen-binding domains of cartilage matrix protein and von Willebrand factor. EMBO J 1989; 8: 1073–7.

    PubMed  CAS  Google Scholar 

  36. Trüeb B, Schaeren-Wiemers N, Schreier T, Winterhalter KH. Molecular cloning of chicken type VI collagen: primary structure of the subunit a2(VI)pepsin. J Biol Chem 1989; 264: 136–40.

    PubMed  Google Scholar 

  37. Doliana R, Bonaldo P, Colombatti A. Multiple forms of chicken a3(VI) collagen chain generated by alternative splicing in type A repeated domains. J Cell Biol 1990; 111: 2197–205.

    Article  PubMed  CAS  Google Scholar 

  38. Zanussi S, Doliana R, Segat D, Bonaldo P, Colombatti A. The human type VI collagen gene mRNA and protein variants of the a3 chain generated by alternative splicing of an additional 5-end exon. J Biol Chem 1992; 267: 2408–29.

    Google Scholar 

  39. Bonaldo P, Russo V, Bucciotti F, Doliana R, Colombatti A. Structural and functional features of the a3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry 1990; 29: 1245–54.

    Article  PubMed  CAS  Google Scholar 

  40. Kielty CM, Whittaker SP, Grant ME, Shuttleworth CA. Type VI collagen microfibrils: evidence for a structural association with hyaluronan. J Cell Biol 1992; 118: 979–90.

    Article  PubMed  CAS  Google Scholar 

  41. Specks U, Mayer U, Nischt R, et al. Structure of recombinant N-terminal globule of type VI collagen a3 chain and its binding to heparin and hyaluronan. EMBO J 1992; 11: 4281–90.

    PubMed  CAS  Google Scholar 

  42. Stallcup WB, Dahlin K, Healy P. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Biol 1990; 111: 3177–88.

    Article  PubMed  CAS  Google Scholar 

  43. Bidanset DJ, Guidry C, Rosenberg LC, Choi HU, Timpl R, Hook M. Binding of the proteoglycan decorin to collagen type VI. J Biol Chem 1992; 267: 5250–6.

    PubMed  CAS  Google Scholar 

  44. Tillet E, Wiedemann H, Golbik R, et al. Recombinant expression and structural and binding properties of al(VI) and a2(VI) chains of human collagen type VI. Eur J Biochem 1994; 221: 177–85.

    Article  PubMed  CAS  Google Scholar 

  45. Rand JH, Patel ND, Schwartz E, Zhou S-L, Potter BJ. 150-KD von Wille-brand factor building protein extracted from human vascular subendothelium is type VI collagen. J Clin Invest 1991; 88: 253–9.

    Article  PubMed  CAS  Google Scholar 

  46. Rand JH, Wu X-X, Potter BJ, Uson RR, Gordon RE. Co-localisation of von Willebrand factor and type VI collagen in human vascular subendothelium. Am J Pathol 1993; 142: 843–50.

    PubMed  CAS  Google Scholar 

  47. Colombatti A, Bonaldo P, Ainger K, Bressan GM, Volpin D. Biosynthesis of chick type VI collagen, I. Intracellular assembly and molecular structure. J Biol Chem 1987; 262: 14454–60.

    PubMed  CAS  Google Scholar 

  48. Engvall E, Hessle H, Klier G. Molecular assembly, secretion and matrix deposition of type VI collagen. J Cell Biol 1986; 102: 703–10.

    Article  PubMed  CAS  Google Scholar 

  49. Kuo H-J, Keene DR, Glanville RW. Orientation of type VI collagen monomers in aggregates. Biochemistry 1989; 28: 3757–62.

    Article  PubMed  CAS  Google Scholar 

  50. Furthmayr H, Wiedmann H, Timpl R, Odermatt E, Engel J. Electron-microscopical approach to a structural model of intima collagen. Biochem J 1983; 211: 303–11.

    PubMed  CAS  Google Scholar 

  51. Bruns RR. Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastruct Mol Struct Res 1984; 89: 136–45.

    CAS  Google Scholar 

  52. Bruns RR, Press W, Engvall E, Timpl R, Gross J. Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol 1986; 103: 393–404.

    Article  PubMed  CAS  Google Scholar 

  53. Engel J, Furthmayr H, Odermatt E, et al. Structure and macromolecular organisation of type VI collagen. Ann NY Acad Sci 1985; 460: 25–37.

    Article  PubMed  CAS  Google Scholar 

  54. Mulholland J, Aplin JD, Ayad S, Hong L, Glasser SR. Loss of collagen type VI from rat endometrial stroma during decidualisation. Biol Reprod 1992; 46: 1136–43.

    Article  PubMed  CAS  Google Scholar 

  55. Glasser SR, Lampelo S, Munir MI, Julian JA. Expression of desmin, laminin and fibronectin during in situ differentiation (decidualisation) of rat uterine stromal cells. Differentiation 1987; 35: 132–42.

    Article  PubMed  CAS  Google Scholar 

  56. Okada Y, Naka K, Minamoto T, et al. Localisation of type VI collagen in the lining cell layer of normal and rheumatoid synovium. Lab Invest 1990; 63: 647–56.

    PubMed  CAS  Google Scholar 

  57. Kielty CM, Cummings C, Whittaker SP, Shuttleworth CA, Grant ME. Isolation and ultrastructural analysis of microfibrillar structures from foetal bovine elastic tissues. Relative abundance and supramolecular architecture of type VI collagen assemblies and fibrillin. J Cell Sci 1991; 99: 797–807.

    PubMed  CAS  Google Scholar 

  58. Kielty CM, Lees M, Shuttlworth CA, Woolley D. Catabolism of intact type VI collagen microfibrils: susceptibility to degradation by serine proteinases. Biochem Biophys Res Commun 1993; 191: 1230–6.

    Article  PubMed  CAS  Google Scholar 

  59. De Feo VJ. Decidualisation. In: Wynn RM, ed. Cellular biology of the uterus. Amsterdam: North-Holland, 1967: 191–290.

    Google Scholar 

  60. Shelesnyak MC. A history of research on nidation. Ann NY Acad Sci 1986; 476: 5–24.

    Article  PubMed  CAS  Google Scholar 

  61. Saitta B, Stokes DG, Vissing H, Timpl R, Chu M-L. Alternative splicing of the human a2(VI) collagen gene generates multiple mRNA transcripts which predict three protein variants with distinct carboxyl termini. J Biol Chem 1990; 265: 6473–80.

    PubMed  CAS  Google Scholar 

  62. Saitta B, Timpl R, Chu M-L. Human a2(VI) collagen gene: heterogeneity at the 5’-untranslated region generated by an alternate exon. J Biol Chem 1992; 267: 6188–96.

    PubMed  CAS  Google Scholar 

  63. Stokes DG, Saitta B, Timpl R, Chu M-L. Human a3(VI) collagen gene. Characterisation of exons coding for the amino-terminal globular domain and alternative splicing in normal and tumor cells. J Biol Chem 1991; 266: 8626–33.

    PubMed  CAS  Google Scholar 

  64. Keene DR, Engvall E, Glanville RW. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol 1988; 107: 1995–2006.

    Article  PubMed  CAS  Google Scholar 

  65. Aplin JD. Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J Cell Sci 1991; 99: 681–92.

    PubMed  Google Scholar 

  66. O’Shea JD, Kleinfeld RG, Morrow HA. Ultrastructure of decidualisation in the pseudopregnant rat. Am J Anat 1983; 166: 271–98.

    Article  PubMed  Google Scholar 

  67. Engel J Laminins and other strange proteins. Biochemistry 1992;31:10643–51.

    Article  PubMed  CAS  Google Scholar 

  68. Engvall E, Earwicker D, Haaparanta T, Ruoslahti E, Sanes JR. Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul 1990; 1: 731–40.

    PubMed  CAS  Google Scholar 

  69. Burgeson RE, Chiquet M, Deutzmann R, et al. A new nomenclature for laminins Matrix Biol 1994; 14: 209–11.

    Article  PubMed  CAS  Google Scholar 

  70. Wewer UM, Damjanov A, Weiss J, Liotta LA, Damjanov I. Mouse endometrial stromal cells produce basement-membrane components. Differentiation 1986; 32: 49–58.

    Article  PubMed  CAS  Google Scholar 

  71. Vuolteenaho R, Nissinen R, Sainio K, et al. Human laminin M chain (merosin): complete primary structure, chromosomal assignment, and expression of the A and M chain in human fetal tissues. J Cell Biol 1994; 124: 381–94.

    Article  PubMed  CAS  Google Scholar 

  72. Leivo I, Engvall E. Merosin, a protein specific for basement membranes of Schwann cells, striated muscle and trophoblast, is expressed late in nerve and muscle development. Proc Natl Acad Sci USA 1988; 85: 1544–8.

    Article  PubMed  CAS  Google Scholar 

  73. Brown J, Wiedemann H, Timpl R. Protein binding and cell adhesion properties of two laminin isoforms from human placenta. J Cell Sci 1994; 107: 3 2938.

    Google Scholar 

  74. Pijnenborg R. Trophoblast invasion. Reprod Med Rev 1994; 3: 53–73.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Aplin, J.D. et al. (1995). Collagen VI and Laminin as Markers of Differentiation of Endometrial Stroma. In: Dey, S.K. (eds) Molecular and Cellular Aspects of Periimplantation Processes. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2548-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2548-5_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7575-6

  • Online ISBN: 978-1-4612-2548-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics