Skip to main content

Optimal Design for Heart Defibrillators

  • Conference paper

Part of the book series: Lecture Notes in Statistics ((LNS,volume 105))

Abstract

During heart defibrillator implantation, a physician fibrillates the patient’s heart several times at different test strengths to estimate the effective strength necessary for defibrillation. One strategy is to implant at the strength that de-fibrillates 95% of the time (ED95). Efficient choice and use of the test strengths in this estimation problem is crucial, as each additional observation increases the risk of serious injury or death. Such choice can be formalized as finding an optimal design in, say, a logistic regression problem with interest in estimating the ED95. In practice, important features specific to this problem are the very small sample sizes; the asymmetry of the loss function; and the fact that the prior distribution arises as the distribution for the next draw of patient-specific parameters in a hierarchical model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bourland, J. D., Tacker, W. A. Jr., and Geddes L. A., (1978) Strength-duration curves for trapezoidal waveforms of various tilts for transchest defibrillation in animals. Medical Instrumentation, 12, 38–41.

    Google Scholar 

  • Chaloner, K. (1993) A note on optimal Bayesian design for nonlinear problems. Journal of Statistical Planning and Inference, 37, 229–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaloner, K. and Larntz, K. (1989) Optimal Bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference, 21, 191–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaloner, K. and Verdinelli, I. (1994) Bayesian experimental design: a review. Technical Report #599, Department of Statistics, Carnegie Melon University.

    Google Scholar 

  • Chen, P.S., Reld, G.F., Mower, M.M., Peters, B.P. (1991). Effects of pacing rate and timing of defibrillation shock on the relation between the defibrillation threshold and the upper limit of vulnerability In open chest dogs. JACC, 18 (6), 1555–63.

    Google Scholar 

  • Cleveland, W.S., Grosse, E. Shyu, W.M. (1992) Local regression models. In: Statistical models in S, editors Chambers, J. M., Hastie, T. J. Wadsworth & Brooks/Cole. pp. 309–376.

    Google Scholar 

  • Clyde, M. (1993) An object-oriented system for Bayesian nonlinear design using XLISP-STAT. Technical Report 587. School of Statistics, University of Minnesota.

    Google Scholar 

  • Davy, J.M., Fain, E.S., Dorian, P. and Winkle, R.A. (1987) The relationship between successful defibrillation and delivered energy in open chest dogs: Reappraisal of the defibrillation concept. American Heart Journal, 113, 77–84.

    Article  Google Scholar 

  • Davy, J.M. (1984) Is there a defibrillation threshold? Circulation, 70-II, 406.

    Google Scholar 

  • Durham, S.D. and Flournoy, N. (1993) Random walks for quantile estimation. In: Statistical Decision Theory and Related Topics V, editors Berger, J. and Gupta, S. Springer-Verlag. (to appear).

    Google Scholar 

  • Flournoy, N. (1993) A clinical experiment in bone marrow transplantation: Estimating a percentage point of a quantal response curve.In: Case Studies in Bayesian Statistics, Editors: C. Gatsonis, J. S. Hodges, R. E. Kass, N. D. Singpurwalla. Springer-Verlag. pp. 324–335.

    Google Scholar 

  • Freeman, P.R. (1983) Optimal Bayesian sequential estimation of the median effective dose. Biometrika, 70, 625–632.

    Article  MathSciNet  Google Scholar 

  • Gatsonis, C. and Greenhouse, J.G. (1992) Bayesian Methods for Phase I Clinical Trials. Statistics in Medicine, 11, 1377–1389.

    Article  Google Scholar 

  • Gliner, B.E., Murakawa, Y. and Thakor, N.V. (1990) The defibrillation success rate versus energy relationship: Part I - Curve fitting and the most efficient defibrillation energy. PACE, 13, 326–338.

    Google Scholar 

  • Malkin, R.A., Ideker, R.E., Pilkington, T.C. (1994)”,Estimating Defibrillation Parameters Using Upper Limit of Vulnerability and Defibrillation Testing”, Technical Report, Electrical Engineering, City College of New York.

    Google Scholar 

  • Malkin, R.A., Pilkington, T.C, Burdick, D.S., Swanson, D.K., Johnson, E. E., Ideker, R. E. (1993) Estimating the 95% Effective Defibrillation Dose. IEEE Trans on EMBS, 40(3), 256–265.

    Google Scholar 

  • Manolis, A.S., Tan-DeGuzman, W., Lee, M.A., Rastegar, H., Haffajee, C.I., Haung, S. K., and Estes, N. A. (1989) Clinical experience in seventy-seven patients with automatic implantable cardioverter defibrillator. American Heart Journal, 118, 445–450.

    Article  Google Scholar 

  • McDaniel, W.C. and Schuder, J.C. (1987) The cardiac ventricular defibrillation threshold: Inherent limitations in its application and interpretation. Medical Instrumentation, 21, 170–176.

    Google Scholar 

  • Müller, P. and Parmigiani, G. (1995) Optimal design via Curve Fitting of Monte Carlo Experiments. Journal of the AMerican Statistical Association (to appear).

    Google Scholar 

  • O’Quigley, J., Pepe, M. and Fisher, L. (1990) Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics, 46, 33–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Parmigiani, G. and Poison N.G. (1992) Bayesian design for random walk barriers. in Bayesian Statistics IV, (J. M. Bernardo, J. 0. Berger, A. P. Dawid and A. F. M. Smith eds.) Oxford University Press, 715–72.

    Google Scholar 

  • Storer, B. (1989) Design and analysis of phase I clinical trials. Biometrics, 45, 925–937.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsutakawa, R. (1972) Design of an experiment for bioassay. Journal of the American Statistical Association, 67, 584–590.

    Article  MATH  Google Scholar 

  • Tsutakawa, R. (1980) Selection of dose levels for estimating a percentage point on a logistic quantal response curve. Applied Statistics, 29, 25–33.

    Article  MATH  Google Scholar 

  • Verdinelli, I. and Kadane, J. (1992) Bayesian designs for maximizing information and outcome Journal of the American Statistical Association 86, 510–515.

    MathSciNet  Google Scholar 

  • Zacks, S. (1977) Problems and approaches in design of experiments for estimation and testing in non-linear models. In Multivariate Analysis IV, 209–223, ed. P.R. Krishnaiah. Amsterdam: North-Holland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Clyde, M., Müller, P., Parmigiani, G. (1995). Optimal Design for Heart Defibrillators. In: Gatsonis, C., Hodges, J.S., Kass, R.E., Singpurwalla, N.D. (eds) Case Studies in Bayesian Statistics, Volume II. Lecture Notes in Statistics, vol 105. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2546-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2546-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94566-8

  • Online ISBN: 978-1-4612-2546-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics