Skip to main content

Mathematical Issues in Optimal Design of a Vapor Transport Reactor

  • Conference paper
Flow Control

Abstract

In this paper the optimal design of a vertical reactor for growing crystals and epitaxial layers by physical vapor transport technique is discussed. The transport phenomena involved in the deposition process is modeled by the gasdynamics equations and chemical kinematics. The problem is formulated as a shape optimization with respect to the geometry of the reactor and an optimal control problem by controlling the wall temperature. The material and shape derivatives of solutions to the so-called Boussinesq approximation are derived. Optimality condition and a numerical optimization method based on the augmented Lagrangian method are discussed for the boundary control of the Boussinesq flow. A numerical approximation based on the Jacobi polynomials for the axi-symmetric flow is developed along with a discussion of an iterative method based on GMRES for solving the resulting system of nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11 (1990), 450–481.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée directionelle de la fonction coût, RAIRO Math. Mod. Num. Anal., 20 (1986), 371–402.

    MathSciNet  MATH  Google Scholar 

  3. C. Canuto, M. Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  4. M.C. Desai and K. Ito, Optimal Control of Navier-Stokes Equations, SIAM J. Control & Optim., to appear.

    Google Scholar 

  5. D. Fujiwara and H. Morimoto, An L p-theory of the Helmholtz decomposition of vector field, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 24 (1977), 685–700.

    MathSciNet  MATH  Google Scholar 

  6. Y. Giga, Domains of fractional powers of the Stokes operator in L p spaces, Arch. Rational Mech. Anal., 89 (1985), 251–265.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  8. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  9. M.R. Hestenes, Multiplier and gradient methods, J. Opt. Theory Appl., 4 (1968), 303–320.

    Article  MathSciNet  Google Scholar 

  10. E.J. Haug, K.K. Choi and V. Komkov, Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando.

    Google Scholar 

  11. J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design: Theory and Applications, John Wiley, New York, 1988.

    MATH  Google Scholar 

  12. K. Ito and K. Kunisch, The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces, Math. Programming.

    Google Scholar 

  13. K. Ito and K. Kunisch, The augmented Lagrangian method for parameter estimation in elliptic systems, SIAM J. Control & Optm., 28 (1990), 113–136.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Ito and K. Kunisch, The augmented Lagrangian method with second order update and its application to parameter estimation in elliptic systems, preprint.

    Google Scholar 

  15. K. Ito, M. Kroller and K. Kunisch, A numerical study of an augmented Lagrangian method for the estimation of parameters in elliptic systems, SIAM J. Sci. Statist. Comput., 12 (1991), 884–910.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Math Programming, 16 (1979), 98–110.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104.

    MathSciNet  MATH  Google Scholar 

  18. O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1984.

    MATH  Google Scholar 

  19. M.J.D. Powell, A method for nonlinear constraints in minimization problems, in ”Optimization” (R. Fletcher, ed.), Academic Press, New York, (1969).

    Google Scholar 

  20. V.T. Polyak and Tret’yakov, The method of penalty estimates for conditional extremum problems, Z. Vychisl. Mat. i Mat. Fiz., 13 (1973), 34–46.

    MATH  Google Scholar 

  21. H. Schlighting, Boundary-Layer Theory, 7th ed., McGraw-Hill, 1979.

    Google Scholar 

  22. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Tanabe, Equations of Evolution, Pitman, San Francisco, 1979.

    MATH  Google Scholar 

  24. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North Holland, Amsterdam, 1971.

    Google Scholar 

  25. G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987.

    MATH  Google Scholar 

  26. H. Tran, J.S. Scroggs and K.J. Bachmann, Modeling of flow dynamics and its impact on the optimal reactor design problem, Proceeding of 1992 AMS-IMS-SIAM Summer Research Conference on Control and Identification of Partial Differential Equations.

    Google Scholar 

  27. K. Yosida, Functional Analysis, Springer-Verlag, New York.

    Google Scholar 

  28. G.W. Young, S.I. Hariharan and R. Carnahan, Flow effects in a vertical CVD reactor, SIAM J. Appl. Math., 52 (1992), 1509–1532.

    Article  MathSciNet  MATH  Google Scholar 

  29. J.P. Zolesio, The material derivative (or spead) method for shape optimization, Optimzation of Distributed Parameters, Part II, (eds. E.J. Haung and J. Céa) NATO Advances Study Institute Series, Series E, Sijthoff & Noordhoff (1981), 1089–1151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Ito, K., Tran, H.T., Scroggs, J.S. (1995). Mathematical Issues in Optimal Design of a Vapor Transport Reactor. In: Gunzburger, M.D. (eds) Flow Control. The IMA Volumes in Mathematics and its Applications, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2526-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2526-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7569-5

  • Online ISBN: 978-1-4612-2526-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics