Skip to main content

Mathematical Modeling and Numerical Simulation in External Flow Control

  • Conference paper
Book cover Flow Control

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 68))

Abstract

This paper presents an investigation of some active control problems for an external flow field. A series of numerical simulations are performed to investigate an unsteady viscous flow generated by a circular cylinder undergoing a combined rotary and rectilinear motion. By treating the rotation rate as a control variable, we present results of the time histories of forces acting on the cylinder surface and their time-averaged values under several types of rotations. The impact of changing rotation rate on the vortex formation, including the synchronization of cylinder and wake, is demonstrated. Based on the optimal control theory, an optimality system is formulated to determine the optimal rotation rates and the solution orbits. Though only the moving boundary mechanism is discussed, the results presented here add insight to the optimal design of control mechanism and may provide guidance to the formulation of other complex optimal flow control problems.

AMS(MOS) subject classifications. 76D05, 49120, 93C20.

This work was supported by Air Force Office of Scientific Research under AFOSR Grant F-49620-92-J-0078. The author gratefully acknowledges Professors John Burns and S.S. Sritharan for many valuable discussions on various aspects of this project. Thanks are also due to Dr. M. Coutanceau for providing the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1 (1990), pp. 303–325.

    Article  MATH  Google Scholar 

  2. H. M. Badr, M. Coutanceau, S. C. R. Dennis and C. Ménard, Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104, J. Fluid Mech., 220 (1990), pp. 459–484.

    Article  Google Scholar 

  3. H. M. Badr and S. C. R. Dennis, Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder, J. Fluid Mech., 158 (1985), pp. 447–488.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. A. Burns and S. Kang, A control problem for Burgers’ equation with bounded input/output, Nonlinear Dynamics, 2 (1991), pp. 235–262.

    Article  Google Scholar 

  5. J. A. Burns and Y.-R. Ou, Effect of rotation rate on the forces of a rotating cylinder: simulation and control, submitted to Phys. fluids A, (1993).

    Google Scholar 

  6. C.-C. Chang and R.-L. Chern, Vortex shedding from an impulsively started rotating and translating cylinder, J. Fluid Mech., 235 (1992), pp. 265–298.

    MathSciNet  Google Scholar 

  7. Y.-M. Chen, Numerical Simulation of the Unsteady Two-dimensional Flow in a Time-dependent Doubly-connected Domain, PhD thesis, University of Arizona, 1989.

    Google Scholar 

  8. Y.-M. Chen and Y.-R. Ou and A. J. Pealstein, Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion: intermediate rotation rates. ICASE Report 91-10 (1991), J. Fluid Mech., 253 (1993), pp. 449–484.

    Article  Google Scholar 

  9. M. Coutanceau and C. Ménard, Influence of rotation on the near-wake development behind an impulsively started circular cylinder; J. Fluid Mech., 158 (1985), pp. 399–446.

    Article  Google Scholar 

  10. H. Fattorini and S. S. Sritharan, Existence of optimal controls for viscous flow problems, Proc. R. Soc. Lond. A, 439 (1992), pp. 81–102.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Gad-el-Hak, Flow control, Appl. Mech. Rev., 42 (1989), pp. 261–293.

    Article  Google Scholar 

  12. M. D. Gunzburger, L. S. Hou and T. P. Svobodny, Numerical approximation of an optimal control problem associated with the Navier-Stokes equations, Appl. Math. Lett., 2 (1989), pp. 29–31.

    Article  MathSciNet  MATH  Google Scholar 

  13. —, Analysis and finite element approximation of optimal control problems for stationary Navier-Stokes equations with distributed and Neuman controls, Mathematics of Computations, 57 (1991), pp. 123–151.

    Article  MathSciNet  MATH  Google Scholar 

  14. —, Boundary velocity control of incompressible flow with an application to viscous drag reduction, SIAM J. Control and Optim., 30 (1992), pp. 167–181.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. B. Herbst, Supermaneuverability, Workshop on Unsteady Separated Flow, Sponsored by AFOSR, FJSRL, U. of Colorado (1983).

    Google Scholar 

  16. A. Jameson, Automatic design of transonic airfoil to reduce the shock induced pressure drag, the 31st Israel Annual Conference on Aviation and Aeronautics, (1990).

    Google Scholar 

  17. S. Kang And K. Ito, A control problem for fluid flow, Proc. 31st IEEE Conference on Decision and Control, Tucson, AZ (1992), pp. 3393–3398.

    Google Scholar 

  18. C. A. Koromilas and D. P. Telionis, Unsteady laminar separation: an experimental study, J. Fluid Mech., 97 (1980), pp 347–384.

    Article  Google Scholar 

  19. J. Mo, An Investigation on the Wake of a Cylinder with Rotational Oscillations, PhD thesis, U. of Tennessee Space Institute 1989.

    Google Scholar 

  20. V. J. Modi, F. Mokhtarian and T. Yokomizo, Effect of moving surfaces on the airfoil boundary-layer control, J. Aircraft., 27 (1990), pp 42–50.

    Article  Google Scholar 

  21. Y.-R. Ou, Control of oscillatory forces on a circular cylinder by rotation, Proc. 4th International Symposium CFD, U. of California. Davis, CA (1991), pp. 897–902.

    Google Scholar 

  22. —, Active flow control relative to a rotating cylinder, Proc. 31st IEEE Conference on Decision and Control, Tucson, AZ (1992), pp. 3399–3404.

    Google Scholar 

  23. —, Active control of exterior hydrodynamics–computational results, to appear in Optimal Control of Viscous Flow, SIAM Frontiers in Applied Mathematics, ed. S.S. Sritharan, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1993.

    Google Scholar 

  24. Y.-R. Ou and J. A. Burns, Optimal Control of lift/drag ratios on a rotating cylinder, Appl. Math. Lett., 5 (1992), pp. 57–62.

    Article  MATH  Google Scholar 

  25. D. S. Park, D. M. Ladd, E. Hendricks, Feedback control of Kármán vortex shedding, Symposium on Active Control of Noise and Vibration, ASME Winter Annual Meering, Anaheim, CA (1992).

    Google Scholar 

  26. L. Prandtl, Über flüssigkeitsbewegung bei sehr kleiner reiburg, Proc. 3rd Int. Math. Congr, Heidelberg, Germany (1904), pp. 484–491.

    Google Scholar 

  27. —, The Magnus effect and windpowered ships, Naturwissenschaften, 13 (1925), pp. 93–108.

    Google Scholar 

  28. T. Sarpkaya, Vortex-induced oscillations, J. Appl. Mech., 46 (1979), pp.241–258.

    Article  Google Scholar 

  29. S. S. Sritharan, Invariant Manifold Theory for Hydrodynamic Transition, Pitman Research Notes in Mathematics Series 241, (1990).

    Google Scholar 

  30. —, Dynamic programming of the Navier-Stokes equations, Systems and Control Letters, 16 (1991), pp. 299–307.

    Google Scholar 

  31. —, An optimal control problem in exterior hydrodynamics, Proc. of the Royal Society of Edinburgh, 121A (1992), pp. 5–32.

    Google Scholar 

  32. S. S. Sritharan, Y.-R. Ou, J. A. Burns, D. Park, D. Ladd, E. Hendrick and N. Nossier, Optimal control of viscous flow past a cylinder: mathematical theory, computation and experiment,, to be published (1992).

    Google Scholar 

  33. W. M. Swanson, The Magnus effect: a summary of investigations to date, ASME J. Basic Engrg., 83 (1961), pp. 461–470.

    Google Scholar 

  34. S. Taneda, Visual study of unsteady separated flows around bodies, Prog. Aero. Sci., 17 (1977) pp. 287–348.

    Article  Google Scholar 

  35. —, Visual observations of the flow past a circular cylinder performing a rotatory oscillation, J. Phys. Soc. Japan, 45 (1978), pp. 1038–1043.

    Article  Google Scholar 

  36. P. T. Tokumaru and P. E. Dimotakis, Rotary oscillation control of a cylinder wake, J. Fluid Mech., 224 (1991), pp. 77–90.

    Article  Google Scholar 

  37. A. Wambecq, Rational Runge-Kutta methods for solving systems of ordinary differential equations, Computing, 20 (1978), pp. 333–342.

    Article  MathSciNet  MATH  Google Scholar 

  38. C.H. K. Williamson, Sinusoidal flow relative to circular cylinders, J. Fluid Mech., 155 (1985) pp. 141–174.

    Article  Google Scholar 

  39. —, Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder, Phys. Fluids, 31 (1988), pp. 2742–2744.

    Article  Google Scholar 

  40. C. H. K. Williamson and A. Roshko, Vortex formation in the wake of an oscillating cylinder, J. Fluids and Structures, 2 (1988), pp. 355–381.

    Article  Google Scholar 

  41. J. C. Wu And J. F. Thompson, Numerical solutions of time-dependent incompressible Navier-Stokes equations using an integral-differential formulation, Computers & Fluids, 1 (1973), pp. 197–215.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Ou, YR. (1995). Mathematical Modeling and Numerical Simulation in External Flow Control. In: Gunzburger, M.D. (eds) Flow Control. The IMA Volumes in Mathematics and its Applications, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2526-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2526-3_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7569-5

  • Online ISBN: 978-1-4612-2526-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics