Skip to main content

Pediatric Cardiopulmonary Bypass

  • Chapter
Cardiopulmonary Bypass

Abstract

Advances in the treatment of congenital heart disease have resulted in an increase in the number of children, infants, and neonates undergoing surgical procedures that require cardiopulmonary bypass (CPB). In a 1990 survey of 127 North American pediatric programs, Groom et al1 reported 11,721 pediatric surgical procedures with CPB in 1988, 12,826 in 1989, and an estimated 14,473 in 1990. Innovative procedures have been developed for the correction of complex lesions.2–4 Implementation of extracorporeal circulation for these procedures is complicated by the technical difficulties associated with patient size and the multiple types and complexity of congenital heart abnormalities (Table 19.1). What are usually routine procedures for establishing and conducting CPB in adults with normal cardiac anatomy are more complicated in the patient with congenital heart disease. These difficulties are compounded by the fact that, according to Groom et al,1 81% of pediatric cases are done in institutions that do fewer than 150 cases annually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Groom RC, Hill A, Kurusz M, et al. Pediatric perfusion survey. Proc Am Acad Cardiovas Perf 1990; 11: 78–84.

    Google Scholar 

  2. Laks H. Advances in the repair of complex congenital heart disease. Pediatr Ann 1982; 11: 926–931.

    PubMed  CAS  Google Scholar 

  3. Castaneda AR, Mayer JE Jr, Jonas RA, Lock JE, Wessel DL, Hickey PR. The neonate with critical congenital heart disease: a surgical challenge. J Thorac Cardiovasc Surg 1989; 98: 869–875.

    PubMed  CAS  Google Scholar 

  4. Esposito G, Keeton BB, Sutherland GR, Monro JL, Manners JM. Open heart surgery in the first 24 hours of life. Pediatr Cardiol 1989; 10: 33–36.

    PubMed  CAS  Google Scholar 

  5. Sugimura S, Starr A. Cardiopulmonary bypass in infants under four months of age. J Thorac Cardiovasc Surg 1977; 73: 894–899.

    PubMed  CAS  Google Scholar 

  6. Hartley-Winkler M, Lambert JJ, Rohre C. Perfusion con-siderations for infants weighing ten kilograms or less. J Extracorp Tech 1985; 17: 31–36.

    Google Scholar 

  7. Stammers AH, Bove EL. The neonatal heart: developmental differences, response to ischemia and protection during cardiopulmonary bypass. J Extracorp Tech 1986; 18: 210–220.

    Google Scholar 

  8. Ferry PC, Neurological sequelae of open-heart surgery in children. AJDC 1990; 144: 309–312.

    Google Scholar 

  9. Conley JC, Zografos CA. Bloodless prime in pediatric cardiopulmonary bypass circuits. J Extracorp Tech 1991; 23: 80–82.

    Google Scholar 

  10. Murkin JM, Farrar JK, Tweed WA, McKenzie FN, Guiraudon G. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of Paco2. Anesth Analg 1987; 66: 825–832.

    PubMed  CAS  Google Scholar 

  11. Bashein AL, Townes BD, Nessly ML. A randomized study of carbon dioxide management during hypothermic cardiopulmonary bypass. Anesthesiology 1990; 72: 7–15.

    PubMed  CAS  Google Scholar 

  12. Belboul A, Khaja NA, Hirayama T, Dahlin A, Karison H, Roberts D. Comparison of Terumo fiber membrane and Harvey 1500 bubble oxygenators using red cell microrheology analysis during cardiopulmonary bypass. J Extracorp Tech 1987; 19: 209–215.

    Google Scholar 

  13. Wright JS, Fisk GC, Torda TA, Stacey RB, Hicks RG. Some advantages of the membrane oxygenator for open heart surgery. J Thorac Cardiovasc Surg 1975; 69: 884–890.

    PubMed  CAS  Google Scholar 

  14. Von Segesser LK, Lachat M, Leskosek B, Turina M. Cardiopulmonary bypass with low systemic heparinization: an experimental study. Perfusion 1990; 5: 267–276.

    Google Scholar 

  15. Olsson P. Non-thrombogenic systems for extra-corporeal gas exchange. Int J Artif Organs 1990; 13: 594.

    Google Scholar 

  16. Nilson L. Heparin-coated equipment reduces complement activation during cardiopulmonary bypass in the pig. Int J Artif Organs 1990; 14: 46–48.

    Google Scholar 

  17. Andrade JD, Coleman DL, Didisheim P. Blood materials interactions, 20 years of frustration. Synopsis of panel conference. Trans Am Soc Artif Intern Organs 1981; 27: 659.

    PubMed  CAS  Google Scholar 

  18. Mottaghy K, Oedekoven B, Poppel K, et al. Heparin free long-term extracorporeal circulation using bioactive surfaces. ASAIO Trans 1989; 35: 635–637.

    PubMed  CAS  Google Scholar 

  19. Barry YA, Labow RS, Keon WJ, Tocchi M, Rock G. Perioperative exposure to plasticizers in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 1989; 97: 900–905.

    PubMed  CAS  Google Scholar 

  20. Hill JD. Blood filtration during extracorporeal circulation. Ann Thorac Surg 1973; 15: 313–316.

    PubMed  CAS  Google Scholar 

  21. Demierre D, Maass E, Garcia E, Turina M. ECC Sources of gaseous microemboli. J Extracorp Tech 1985; 17: 20–26.

    Google Scholar 

  22. Ueda M, Kondo Y, Makuuchi H, Konishi T. Removal of particle contamination in the extracorporeal circuit detected by an in-line particle counter. J Extracorp Tech 1989; 21: 24–28.

    Google Scholar 

  23. Mollison DR, Streczyn MV. In depth evaluation of arterial line filtration of air emboli in bubbler and membrane oxygenators. AMSECT Proc 1976: 99–102.

    Google Scholar 

  24. Orenstein JM, Sato N, Aaron B, Buchholz B, Bloom S. Microemboli observed in deaths following cardiopulmonary bypass surgery. Hum Pathol 1982; 13: 1082–1090.

    PubMed  CAS  Google Scholar 

  25. Muraoka R, Yokota M, Aoshima M, Kyoku I, Nomoto S, Kobayashi A, Nakano H, Ueda K, Saito A, Hojo H. Sub-clinical changes in brain morphology following cardiac operations as reflected by computed tomographic scans of the brain. J Thorac Cardiovasc Surg 1981; 81: 364–369.

    PubMed  CAS  Google Scholar 

  26. Ratcliffe JM, Wyse RK, Hunter S, Albert KG, Elliot MJ. The role of priming fluid in the metabolic response to cardiopulmonary bypass in children less than 15 kg body weight undergoing open-heart surgery. J Thorac Cardiovasc Surg 1988; 36: 65–74.

    CAS  Google Scholar 

  27. Hosking MP, Beynen FM, Raimundo HS, Oliver WC, Williamson KR. A comparison of washed red cells versus packed red blood cells (AS-1) for cardiopulmonary bypass prime and their effects on blood glucose concentration in children. Anesthesiology 1990; 72: 987–990.

    PubMed  CAS  Google Scholar 

  28. Ridley PD, Ratcliffe JM, Alberti MM, Elliot MJ. The metabolic consequences of a “washed” cardiopulmonary bypass pump-priming fluid in children undergoing cardiac operations. J Thorac Cardiovasc Surg 1990; 100: 528–537.

    PubMed  CAS  Google Scholar 

  29. Hallowell P, Bland JHL, Dalton BC, Eardmann AJ, Lappas DG, Laver MB, Philbin D, Thomas S, Lowenstein E. The effect of hemodilution with albumin or Ringer’s lactate on water balance and blood use in open-heart surgery. Ann Thorac Surg 1978; 25: 22–29.

    PubMed  CAS  Google Scholar 

  30. Boldt J, Zickman B, Ballesteros BM, Stertmann F, Hempelmann G. Influence of five different priming solutions on platelet function in patients undergoing cardiac surgery. Anesth Analg 1992; 74: 219–225.

    PubMed  CAS  Google Scholar 

  31. Rigden SP, Dillon MJ, Kind PR, deLeval M, Stark J, Barratt TM. The beneficial effect of mannitol on postoperative renal function in children undergoing cardiopulmonary bypass surgery. Clin Nephrol 1984; 21: 148–151.

    PubMed  CAS  Google Scholar 

  32. Utley JR, Stephens DB, Wachtel C. Effect of albumin and mannitol on organ blood flow, oxygen delivery, water content, and renal function during hypothermic hemodilution cardiopulmonary bypass. Ann Thorac Cardiovasc Surg 1982; 33: 250–257.

    CAS  Google Scholar 

  33. Marelli D, Paul A, Samson R, Edgell D, Angood P, Chiu RC. Does the addition of albumin to the prime solution in cardiopulmonary bypass affect clinical outcome? J Thorac Cardiovasc Surg 1989; 98: 751–756.

    PubMed  CAS  Google Scholar 

  34. D’Ambra MN, Philbin DM. Con: colloids should not be added to the pump prime. J Cardiothorac Anesth 1990; 4: 406–408.

    PubMed  Google Scholar 

  35. London MJ. Pro: colloids should be added to the pump prime. J Cardiothorac Anesth 1990; 4: 401–405.

    PubMed  CAS  Google Scholar 

  36. Hirsch DM Jr, Hadidan C, Neville WE. Oxygen consumption during cardiopulmonary bypass with large volume hemodilution. J Thorac Cardiovasc Surg 1968; 56: 197–202.

    PubMed  Google Scholar 

  37. Milam JD, Austin SF, Nihill MR, Keats AS, Cooley DA. Use of sufficient hemodilution to prevent coagulopathies following surgical correction of cyanotic heart disease. J Thorac Cardiovasc Surg 1985; 89: 623–629.

    PubMed  CAS  Google Scholar 

  38. Lilleaasen P, Stokke O. Moderate and extreme haemodilution in open-heart surgery. Evaluation of haemolysis, cell damage and protein changes. Scand J Clin Lab Invest 1979; 39: 133–141.

    PubMed  CAS  Google Scholar 

  39. Utley JR, Wachtel C, Cain RB, Spaw EA, Collins JC, Stephens DB. Effects of hypothermia, hemodilution, and pump oxygenation on organ water content, blood flow and oxygen delivery, and renal function. Ann Thorac Surg 1981; 31: 121–133.

    PubMed  CAS  Google Scholar 

  40. Kawamura M, Minamikawa O, Yokochi H, Maki S, Yasuda T, Mizukawa Y. Safe limit of hemodilution in cardiopulmonary bypass — comparative analysis between cyanotic and acyanotic congenital heart disease. Jpn J Surg 1980; 10: 206–211.

    PubMed  CAS  Google Scholar 

  41. Burch M, Redington AN, Carvalho JS, Rusconi P, Shinedourne EA, Rigby ML, Paneth M, Lincoln C. Open valvotomy for critical aortic stenosis in infancy. Br Heart J 1990; 63: 37–40.

    PubMed  CAS  Google Scholar 

  42. Newland PE, Pasoriza PJ, McMillan J, Smith BF, Stirling GR. Maximal conservation and minimal usage of blood products in open-heart surgery. Anesth Intens Care 1980; 8: 178–182.

    CAS  Google Scholar 

  43. Kawaguchi A, Bergsland J, Subramanian S Total bloodless open heart surgery in the pediatric age group. Circulation (suppl) 1984; 70: I30 - I37.

    PubMed  CAS  Google Scholar 

  44. Cosgrove DM, Loop FD, Lytle BW. Blood conservation in cardiac surgery. Cardiovasc Ther 1981; 12: 165–175.

    CAS  Google Scholar 

  45. Henling CE, Carmichael MJ, Keats AS, Cooley DA. Cardiac operation for congenital heart disease in children of Jehovah’s Witnesses. J Thorac Cardiovasc Surg 1985; 89: 914–920.

    PubMed  CAS  Google Scholar 

  46. Stein JI, Gombotz H, Rigler B, Metzler H, Suppan C, Beitzke A. Open heart surgery in children of Jehovah’s Witnesses. Pediatr Cardiol 1991; 12: 170–174.

    PubMed  CAS  Google Scholar 

  47. Manno CS, Hedberg KW, Kim HC, Bunin GR, Nicolson S, Jobes D, Schwartz E, Norwood WI. Comparison of the hemostatic effects of fresh whole blood, and components after open heart surgery in children. Blood 1991; 77: 930–936.

    PubMed  CAS  Google Scholar 

  48. Zobel G, Stein JI, Kuttnig M, Beitzke A, Metzler H, Rigler B. Continuous extracorporeal fluid removal in children with low cardiac output after cardiac operations. J Thorac Cardiovasc Surg 1991; 101: 593–597.

    PubMed  CAS  Google Scholar 

  49. Anand KJS, Hansen DD, Hickey PR. Hormonal-metabolic stress response in neonates undergoing cardiac surgery. Anesthesiology 1990; 73: 661–670.

    PubMed  CAS  Google Scholar 

  50. Anand KJS, Sippell WG, Aynsley-Green A. Randomized trial of fentanyl anaesthesia in preterm neonates undergoing surgery: effects on the stress response. Lancet 1987; 1: 62–66.

    PubMed  CAS  Google Scholar 

  51. Anand KJS, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med 1992; 326: 1–9.

    PubMed  CAS  Google Scholar 

  52. DeBock TL, Davis PJ, Tome J, Petrilli R, Siewers RD, Motoyama EK. Effect of premedication on arterial oxygen in children with congenital heart disease. J Cardiothorac Anesth 1990; 4: 425–429.

    PubMed  CAS  Google Scholar 

  53. Nicolson SC, Betts EK, Jobes DR, Christiansan LA, Walters JK, Mayes KR, Korevaar W. Comparison of oral and intramuscular preanesthetic medication for pediatric inpatient surgery. Anesthesiology 1989; 71: 8–10.

    PubMed  CAS  Google Scholar 

  54. Fields LH, Negus JB, White PF. Oral midazolam preanesthetic medication in pediatric patients. Anesthesiology 1990; 73: 831–834.

    Google Scholar 

  55. Miller BR, Friesen RH. Oral atropine premedication in infants attenuates cardiovascular depression during halo-thane anesthesia. Anesth Analg 1988; 67: 180–185.

    PubMed  CAS  Google Scholar 

  56. Hickey PR, Hansen DD. Fentanyl-and sufentanil-oxygen-pancuronium anesthesia for cardiac surgery in infants. Anesth Analg 1984; 63: 117–124.

    PubMed  CAS  Google Scholar 

  57. Moore RA, Yang SS, McNicholas KW, Gallagher JD, Clark DL. Hemodynamic and anesthetic effects of sufentanil as the sole anesthetic for pediatric cardiovascular surgery. Anesthesiology 1985; 62: 725–731.

    PubMed  CAS  Google Scholar 

  58. Wolf WJ, Neal MB, Peterson MD. The hemodynamic and cardiovascular effects of isoflurane and halothane in children. Anesthesiology 1986; 64: 328–333.

    PubMed  CAS  Google Scholar 

  59. Fisher DM, Robinson S, Brett CM, Perin G, Gregory GA. Comparison of enflurane, halothane, isoflurane for diagnostic and therapeutic procedures in children with malignancies. Anesthesiology 1985; 63: 647–650.

    PubMed  CAS  Google Scholar 

  60. Greeley WJ, Bushman GA, Davis DP, Reves JG. Comparative effects of halothane and ketamine on systemic arterial oxygen saturation in children with cyanotic heart disease. Anesthesiology 1986; 65: 666–668.

    PubMed  CAS  Google Scholar 

  61. Laishley RS, Burrows FA, Lerman J, Roy WL. Effect of anesthetic induction regimens on oxygen saturation in cyanotic congenital heart disease. Anesthesiology 1986; 65: 673–677.

    PubMed  CAS  Google Scholar 

  62. Hensley FA, Larach DR, Martin DE, Stauffer RA, Waldhausen JA. The effect of halothane/nitrous oxide/oxygen mask induction on arterial hemoglobin saturation in cyanotic heart disease. J Cardiothorac Anesth 1987; 11: 289–296.

    Google Scholar 

  63. Bland JW, Williams WH. Anesthesia for treatment of congenital heart defects. In: Kaplan JA, ed. Cardiac Anesthesia. New York: Grune and Stratton; 1979: 281–346.

    Google Scholar 

  64. Morray JP, Lynn AM, Stamm SJ, Herndon PS, Kawabori I, Stevenson JG. Hemodynamic effects of ketamine in children with congenital heart disease. Anesth Analg 1984; 63: 895–899.

    PubMed  CAS  Google Scholar 

  65. Hickey PR, Hansen DD, Cramolini GM, Vincent RN, Lang P. Pulmonary and systemic responses to ketamine in infants with normal and elevated pulmonary vascular resistances. Anesthesiology 1985; 62: 287–293.

    PubMed  CAS  Google Scholar 

  66. Yaster M. The dose response of fentanyl in neonatal anesthesia. Anesthesiology 1987; 66: 433–435.

    PubMed  CAS  Google Scholar 

  67. Lawson D, Norley I, Korban G, Loeb R, Ellis J. Blood flow limits and pulse oximeter signal detection. Anesthesiology 1987; 67: 599–603.

    PubMed  CAS  Google Scholar 

  68. Jobes DR, Nicolson SC. Monitoring of arterial hemoglobin saturation using a tongue sensor. Anesth Analg 1988; 67: 186–188.

    PubMed  CAS  Google Scholar 

  69. Band J, Maki D. Infections caused by arterial catheters used for hemodynamic monitoring. Am J Med 1979; 67: 735–741.

    PubMed  CAS  Google Scholar 

  70. Gallagher JD, Moore RA, McNicholas KW, Jose AB. Comparison of radial and femoral arterial blood pressure in children after cardiopulmonary bypass. J Clin Monit 1985; 1: 168–171.

    PubMed  CAS  Google Scholar 

  71. Glenski JA, Beynen FM, Brady J. A prospective evaluation of femoral artery monitoring in pediatric patients. Anesthesiology 1987; 66: 227–229.

    PubMed  CAS  Google Scholar 

  72. Lawless S, Orr R. Axillary arterial monitoring of pediatric patients. Pediatrics 1989; 84: 273–275.

    PubMed  CAS  Google Scholar 

  73. Gold JP, Jonas RA, Lang P, Elixson EM, Mayer JE, Casteneda AR. Transthoracic intracardiac monitoring lines in pediatric patients: a ten-year experience. Ann Thorac Surg 1986; 42: 185–191.

    PubMed  CAS  Google Scholar 

  74. Hayashi Y, Uchida O, Tataki O, Ohnishi Y, Nakajima T, Kataoka H, Kuro M. Internal jugular vein catheterization in infants undergoing cardiovascular surgery: an analysis of the factors influencing successful catheterization. Anesth Analg 1992; 74: 688–693.

    PubMed  CAS  Google Scholar 

  75. Introna RPS, Martin DC, Pruett JK, Philpot TE, Johnston JF. Percutaneous pulmonary artery catheterization in pediatric cardiovascular anesthesia: insertion technique and use. Anesth Analg 1990; 70: 562–566.

    PubMed  CAS  Google Scholar 

  76. Colgan FJ, Stewart S. An assessment of cardiac output by thermodilution in infants and children following cardiac surgery. Crit Care Med 1977; 5: 220–225.

    PubMed  CAS  Google Scholar 

  77. Young JA, Kisker CT, Doty DB. Adequate anticoagulation during cardiopulmonary bypass determined by activated clotting time and the appearance of fibrin monomer. Ann Thorac Surg 1978; 26: 231–240.

    PubMed  CAS  Google Scholar 

  78. Metz S, Keats AS. Low activated coagulation time during cardiopulmonary bypass does not increase postoperative bleeding. Ann Thorac Surg 1990; 49: 40–44.

    Google Scholar 

  79. Williams GD, Seifer AB, Lawson NM, Norton JB, Readinger RI, Dungen TW, Callaway JK. Pulsatile perfusion versus conventional high flow nonpulsatile perfusion for rapid core cooling and rewarming of infants for circulatory arrest in cardiac operation. J Thorac Cardiovasc Surg 1979; 78: 667–677.

    PubMed  CAS  Google Scholar 

  80. Mohri H, Dillard DH, Crawford EW, Martin WE, Merendino KA. Method of surface-induced deep hypothermia for open-heart surgery in infants. J Thorac Cardiovasc Surg 1969; 58: 262–270.

    PubMed  CAS  Google Scholar 

  81. Clowes GHA, Neville WE. The relationship of oxygen consumption, perfusion rates, and temperature to the acidosis associated with cardiopulmonary bypass. Surgery 1958; 44: 220.

    PubMed  Google Scholar 

  82. Kirklin JK, Kirklin JW, Pacifico AD. Cardiopulmonary bypass. In: Arciniegas E, ed. Pediatric Cardiac Surgery. Chicago: Year Book Medical Publishers; 1985: 67–77.

    Google Scholar 

  83. Swan H, Sanchez M, Tyndall M, Koch C. Quality control of perfusion: monitoring venous blood oxygen tension to prevent hypoxic acidosis. J Thorac Cardiovasc Surg 1990; 99: 868–872.

    PubMed  CAS  Google Scholar 

  84. Kirklin JK, Westaby S, Blackstone EH, Kirklin JW. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1983; 86: 845–857.

    PubMed  CAS  Google Scholar 

  85. Ekroth R, Thompson RJ, Lincoln C, Scallen M, Rossi R, Tsang V. Elective deep hypothermia with total circulatory arrest: changes in plasma creatinine BB, blood glucose, and clinical variables. J Thorac Cardiovasc Surg 1989; 97: 3035.

    Google Scholar 

  86. Rossi R, Ekroth R, Thompson RJ. No flow or low flow? A study of the ischemic marker creatine BB after deep hypothermic procedures. J Thorac Cardiovasc Surg 1989; 98: 193–199.

    PubMed  CAS  Google Scholar 

  87. Greeley WJ, Kern FH, Ungerleider RM, Boyd JL, Quill T, Smith LR, Baldwin B, Reves JG. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg 1991; 101: 783–794.

    PubMed  CAS  Google Scholar 

  88. Hickey PR. Use of hypothermic circulatory arrest rather than low-flow bypass for repair of complex cardiac defects in infants. Pro: Deep hypothermic circulatory arrest is preferable to low-flow bypass. J Cardiothorac Vasc Anesth 1991; 5: 635–637.

    PubMed  CAS  Google Scholar 

  89. Greeley WJ. Use of hypothermic circulatory arrest rather than low-flow bypass for repair of complex cardiac defects in infants. Con: Deep hypothermic arrest must be used selectively and discreetly. J Cardiothorac Vasc Anesth 1991; 5: 638–640.

    PubMed  CAS  Google Scholar 

  90. Fox LS, Blackstone E, Kirklin JW, Bishop S, Bergdahl LAL, Bradley EL. Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg 1984; 87: 658–664.

    PubMed  CAS  Google Scholar 

  91. Watanabe T, Orita H, Kobayashi M, Washio M. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg 1989; 97: 396–401.

    PubMed  CAS  Google Scholar 

  92. Rebeyka IM, Coles JG, Wilson GJ, Watanabe T, Taylor MJ, Adler SF, Mickle DAG, Romaschin AD, Ujc H, Burrows FA, Williams WG, Trusler GA, Kielmanowics S. The effect of low-flow cardiopulmonary bypass on cerebral function: an experimental and clinical study. Ann Thorac Surg 1987; 43: 391–396.

    PubMed  CAS  Google Scholar 

  93. Miyamoto K, Kawashima Y, Matsuda H, Okuda A, Maeda S, Hirose H. Optimal perfusion flow rate for the brain during deep hypothermic cardiopulmonary bypass at 20°C. J Thorac Cardiovasc Surg 1986; 92: 1065–1070.

    PubMed  CAS  Google Scholar 

  94. Kern FH, Greeley WJ, Ungerleider RM, Quill TJ, Baldwin B, Smith LR, Reves JG. Cerebral blood flow and metabolism are independent of pump flow rate during hypothermic cardiopulmonary bypass in children. Anesthesiology 1990; 73: A1107.

    Google Scholar 

  95. Taylor RH, Burrows FA, Bissonnette B. No flow during low-flow cardiopulmonary bypass. J Thorac Cardiovasc Surg 1991; 101: 362–364.

    PubMed  CAS  Google Scholar 

  96. Greeley WJ, Ungerleider RM, Kern FH, Brusinof G, Smith LR, Reves JG. Effects of cardiopulmonary bypass on cerebral blood flow in neonates, infants, and children. Circulation 1989; 80: 1209–1215.

    Google Scholar 

  97. Taylor RH, Burrows FA, Bissonnette B. Cerebral pressure-flow velocity relationships during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg 1992; 74: 636–642.

    PubMed  CAS  Google Scholar 

  98. Newburger JW, Jonas RA, Wesnovsky G, et al. A comparison of the perioperative neurological effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl JMed 1993; 329: 1057 1064.

    Google Scholar 

  99. Kurth CD, Steven JM, Nicolson SC, Chance B. Arterial pressure (BP) thresholds for cerebral oxygenation in neonates with congenital heart disease. Anesthesiology 1989; 71: A1034.

    Google Scholar 

  100. Kern FH, Ungerleider RM, Quill TJ, Baldwin B, White WD, Reves JG, Greeley WJ. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children. J Thorac Cardiovasc Surg 1991; 101: 618–622.

    PubMed  CAS  Google Scholar 

  101. Noback CR, Tinker JH. Hypothermia after cardiopulmonary bypass in man. Anesthesiology 1980; 53: 277–280.

    PubMed  CAS  Google Scholar 

  102. Gillette PC. Diagnosis and management of post-operative junctional ectopic tachycardia. Am Heart J 1989; 118: 192–194.

    PubMed  CAS  Google Scholar 

  103. Graves ED, Redmond CR, Arensman RM. Persistent pulmonary hypertension in the neonate. Chest 1988; 93: 638–641.

    PubMed  Google Scholar 

  104. Priebe HJ. Hemodilution and oxygenation. In: Brodsky JB, ed. International Anesthesiology Clinics. Boston: Little, Brown; 1981: 237–255.

    Google Scholar 

  105. Klitzner TS. Maturational changes in excitation-contraction coupling in mammalian myocardium. J Am Coll Cardiol 1991; 17: 218–225.

    PubMed  CAS  Google Scholar 

  106. Das JB, Eraklis AJ, Adams JG Jr, Gross RE. Changes in serum ionic calcium during cardiopulmonary bypass with hemodilution. J Thorac Cardiovasc Surg 1971; 62: 449–453.

    PubMed  CAS  Google Scholar 

  107. Lang P, Williams RG, Norwood WI, Casteneda AR. The hemodynamic effects of dopamine in infants after corrective cardiac surgery. J Pediatr 1980; 96: 630–634.

    PubMed  CAS  Google Scholar 

  108. Williams DB, Kiernan PD, Schaff HV, Marsh HM, Danielson GK. The hemodynamic response to dopamine and nitroprusside following right atrium-pulmonary artery bypass (Fontan procedure). Ann Thorac Surg 1982; 34: 51–57.

    PubMed  CAS  Google Scholar 

  109. Drummond WH, Gregory GA, Heymann MA. The independent effects of hyperventilation, tolazine, and dopamine on infants with persistent pulmonary hypertension. J Pediatr 1981; 98: 603–611.

    PubMed  CAS  Google Scholar 

  110. Mentzer RM, Alegre CA, Nolan SP. The effects of dopamine and isoproterenol on the pulmonary circulation. J Thorac Cardiovasc Surg 1976; 71: 807–814.

    PubMed  CAS  Google Scholar 

  111. Bohn DJ, Poirier CS, Edmonds JF. The hemodynamic effects of dobutamine after cardiopulmonary bypass in children. Crit Care Med 1980; 8: 367–371.

    PubMed  CAS  Google Scholar 

  112. Benzing G, Helmsworth JA, Schreiber JT, Kaplan S. Nitroprusside and epinephrine for treatment of low output in children after open-heart surgery. Ann Thorac Surg 1978; 27: 523–528.

    Google Scholar 

  113. Applebaum A, Blackstone E, Kouchoukos NT, Kirklin JW. Afterload reduction and cardiac output in infants after intracardiac surgery. Am J Cardiol 1977; 39: 445–451.

    Google Scholar 

  114. Taylor RH, Skippen PW, Bohn D. Amrinone versus dopamine following cardiac surgery in children. Anesth Analg 1990; 70: S405.

    Google Scholar 

  115. Rubis LJ, Stephenson LW, Johnston MR. Comparison of effects of prostaglandin Eland nitroprusside on pulmonary vascular resistance in children after open-heart surgery. Ann Thorac Surg 1981; 32: 563–570.

    PubMed  CAS  Google Scholar 

  116. Rasch DK, Lancaster L. Successful use of nitroglycerin to treat post-operative pulmonary hypertension. Crit Care Med 1987; 15: 616–617.

    PubMed  CAS  Google Scholar 

  117. Ungerleider RM, Greeley WJ, Sheikh KH, Philips J, Pearce F, Kern FH, Kisslo JA. Routine use of intraoperative epicardial echocardiography and Doppler color flow imaging to guide and evaluate repair of congenital heart lesions. J Thorac Cardiovasc Surg 1990; 100: 297–309.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bailey, J.M., Daly, W.L. (1995). Pediatric Cardiopulmonary Bypass. In: Mora, C.T., Guyton, R.A., Finlayson, D.C., Rigatti, R.L. (eds) Cardiopulmonary Bypass. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2484-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2484-6_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7557-2

  • Online ISBN: 978-1-4612-2484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics