Napoleon’s Theorem

  • Philip J. Davis


I begin with kerosene at seven cents a gallon. In Northeastern Massachusetts this was its price in the winter of 1936. The winter was fierce and the economic depression was worse. My father could not afford to heat more than one room of our house — the kitchen, naturally. And so we lived in the kitchen, as did many of our neighbors. There was my father, my mother, and I; my older brothers and sister were away. When it was time for bed, I opened the door of an icy bedroom, closed it behind me carefully, and lay down between two quilts on top and an old khaki army blanket underneath.


Equilateral Triangle Generalize Inverse Soap Film Circulant Matrice Remarkable Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, Robert Loring. Irving Fisher, Blackwell, Cambridge, 1993.Google Scholar
  2. Baker, H.F. A remark on polygons, J. London Math. Soc. (1942), 162–164.Google Scholar
  3. Berkhan, G and Meyer, W.F. Neuere Dreiecksgeometrie, Encyclopedie der Mathematischen Wissenschaften, III AB 10, Band III, Heft 7, pp. 1173–1276. B.G. Teubner, Leipzig, 1920.Google Scholar
  4. Boyer, Carl B. A History of Mathematics. John Wiley & Sons, New York, 1968.MATHGoogle Scholar
  5. Cavallaro, Vincenzo G. Sur les segments toricelliens, Mathesis 52 (1938), 290–293.MATHGoogle Scholar
  6. Carnot, L. Oeuvres Mathématique du Citoyen Carnot, Basel, J. Decker, 1797.Google Scholar
  7. Chang, G. A proof of a theorem of Douglas and Neumann by circulant matrices, Houston Math. J., 7 (1981). No. 4.Google Scholar
  8. Coxeter, H.S.M. Introduction to Geometry, John Wiley & Sons, New York, 1961.MATHGoogle Scholar
  9. Coxeter, H.S.M. and Greitzer, S.L. Geometry Revisited, Random House, New Mathematical Library, 1967, 63–65.MATHGoogle Scholar
  10. Davis, P.J. Cyclic transformation of polygons and the generalized inverse, Canadian J. Math,. 29 (1977), 756–770.MATHCrossRefGoogle Scholar
  11. Davis, P.J. Cyclic transformations of n-gons and related quadratic forms. Linear Algebra and its Applications, 25 (1979), 57–75.MathSciNetMATHCrossRefGoogle Scholar
  12. Davis, P.J. Circulant Matrices, John Wiley & Sons, New York (1979).MATHGoogle Scholar
  13. Douglas, J. Geometry of polygons in the complex plane, J. Math. Phys. 19 (1940), 93–130.Google Scholar
  14. Douglas, J. On linear polygon transformation, Bull. Amer. Math. Soc. 46 (1940), 551–560.MathSciNetCrossRefGoogle Scholar
  15. Faifofer, Aureliano. Elementi di Geometria, 17th ed., Venezia, 1911.MATHGoogle Scholar
  16. Finsler, P. and Hadwiger, H. “Einige Relationen in Dreieck” Commentarii Mathematici Helvetia, Vol. 10 (1938), 316–326.CrossRefGoogle Scholar
  17. Fischer, Joachim. “Napoleon und die Naturwissenschaften,” Franz Steiner Verlag, Wiesbaden, 1988.Google Scholar
  18. Fischer, W. “Ein geometrischer Satz,” Arch. Math. Phys. 40 (1863), 460–462.Google Scholar
  19. Fisher, Irving Norton. My Father Irving Fisher, Comet Press Books, New York, 1956.Google Scholar
  20. Forder, H.G. The Calculus of Extension, Cambridge University Press, 1941.Google Scholar
  21. Kline, Morris. Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972, 304–317.MATHGoogle Scholar
  22. Laisant, C.-A. Sur quelques propriétés des polygones, Assoc, française pour l’avancement des sciences, Compte rendu 1877, 142–154.Google Scholar
  23. Laisant, C.-A. Théorie et applications des équipollences, Gauthier-Villars, Paris, 1887.MATHGoogle Scholar
  24. DeLaunay, Louis. Monge, Editions Pierre Roger, Paris, 1933, 222.Google Scholar
  25. Mackey, J.S. Isogonic centres of a triangle, Proc. Edin. Math. Soc., 15, 1897, 100–118.CrossRefGoogle Scholar
  26. Maritain, Jacques. The Dream of Descartes, Philosophical Library, New York, 1944.Google Scholar
  27. Medawar, P.B. Advice to a Young Scientist, Harper & Row, 1979.Google Scholar
  28. Neumann, B.H. Some remarks on polygons, London Math. Soc. J., 16 (1941), 230–245.CrossRefGoogle Scholar
  29. Neumann, B.H. A remark on polygons, London Math. Soc. J. 17 (1942), 162–164.CrossRefGoogle Scholar
  30. Neumann, B.H. Plane polygons revisited, Essays in Statistical Science, Papers in Honour of P.A.?. Moran. J. Ghani and E.J. Hannon, eds., Journal of Applied Probability, Special Vol. 15A, 1982, pp.113–122.Google Scholar
  31. Neumann, R. Geometrische Untersuchung eines Ausgleichstransformators für unsymmetrische Drehstromsysteme, Elektrotechnik und Machinenbau 39 (1911), 747–751.Google Scholar
  32. Neumann, Richard. Symmetrical Component Analysis, Pitman, London, 1939.Google Scholar
  33. Osserman, Robert. The Poetry of the Universe, Anchor, New York, 1995.Google Scholar
  34. Pedoe, Daniel. Thinking geometrically, A.M. Monthly, 77 (1970), 711–721.MathSciNetMATHCrossRefGoogle Scholar
  35. Pedoe, Daniel. A Course of Geometry for Colleges and Universities, Cambridge University Press.Google Scholar
  36. Phillips, Andrew Wheeler. 1844–1915, privately printed, New Haven, 1915.Google Scholar
  37. Phillips, A.W. and Fischer, I. Elements of Geometry, Harper, New York, 1896. Last printing, 1943.MATHGoogle Scholar
  38. Rutherford, W. “VII Quest. (1439),” Ladies’ Diary, No. 122, (1825), 47.Google Scholar
  39. Scriba, Christoph J. “Wie Kommt ‘Napoleons Satz’ zu Seinem Namen?,” Hist. Math. 8, 1980, pp. 458–459.MathSciNetCrossRefGoogle Scholar
  40. Vrooman, J.R. René Descartes, Putnams, New York, 1970.Google Scholar
  41. Wetzel, John E. Converses of Napoleon s theorem, Am. Math. Monthly, Vol. 99, 1992, pp. 339–351.MathSciNetMATHCrossRefGoogle Scholar
  42. Wetzel, John E. E-mail correspondence, November 30, 1995.Google Scholar
  43. Yaglom, I.M. Geome tric Transformations, Random House, 1962 38–40.Google Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Philip J. Davis
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations