Skip to main content

Some Characterisations of Low-dimensional Dynamical Systems with Time-reversal Symmetry

  • Conference paper
Control and Chaos

Part of the book series: Mathematical Modelling ((MMO,volume 8))

Abstract

The structure of the differential or difference equations used to model a complex real-life system should reflect some of the underlying symmetries of the system. Characterising and exploiting this structure can lead to better prediction and explanation of the motion. For example, a well-studied structure is that found in Hamiltonian or conservative dynamical systems. In this paper, we survey our work on dynamical systems with another type of structure, namely a (generalised) time-reversal symmetry. We explain some of the dynamical consequences and structure arising from this property. We explore the question of how systems with this (generalized) time-reversal symmetry are similar to, and how they differ from, Hamiltonian dynamical systems. We pay particular attention to low-dimensional (2D and 3D) systems and use specific examples to illustrate our points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnol’d V I 1984 Nonlinear and Turbulent Processes in Physics, Vol. 3, ed. R. Z. Sagdeev (Harwood, Chur) p 1161.

    Google Scholar 

  2. V. I. Arnol’d and M. B. Sevryuk, Oscillations and bifurcations in reversible systems, in: Nonlinear Phenomena in Plasma Physics and Hydrodynamics, ed. R. Z. Sagdeev (Mir, Moscow, 1986) pp. 31–64.

    Google Scholar 

  3. M. Baake and J. A. G. Roberts, Reversing symmetry group of Gl(2, Z) and PGl(2, Z) matrices with connections to cat maps and trace maps, J. Phys. A to appear.

    Google Scholar 

  4. H. Bass and G. Meisters, Polynomial flows in the plane, Adv. Math. 55 (1985) 173–208.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bullet, Dynamics of quadratic correspondences, Nonlinearity 1 27–50.

    Google Scholar 

  6. R. L. Devaney, Reversible diffeomorphisms and flows, Trans.Am.Math.Soc. 218 (1976) 89–112.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., (Addison-Wesley, Redwood, 1989).

    MATH  Google Scholar 

  8. DeVogelaere R 1958 Contributions to the Theory of Nonlinear Oscillations Vol 4, ed. S.Lefschetz (Princeton Univ. Press, Princeton) p 53.

    Google Scholar 

  9. Eckmann J-P and Procaccia I 1991 Phys. Rev. Lett. 66 891, Nonlinearity 4 567.

    Article  Google Scholar 

  10. A. van den Essen, Seven lectures on polynomial automorphisms, in: Automorphisms of Affine Spaces, ed. A. van den Essen (Kluwer, Dordrecht, 1995) pp. 3–39.

    Google Scholar 

  11. Greene J M, MacKay R S, Vivaldi F and Feigenbaum M J 1981 Physica D 3 468.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1992).

    Google Scholar 

  13. Kazarinoff N D and Yan J G G 1991 Physica D 48 147.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lamb J S W 1992 J. Phys. A 25 925.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. S. W. Lamb, J. A. G. Roberts and H. W. Capel, Conditions for local (reversing) symmetries in dynamical systems, Physica A 197 (1993) 379–422.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. S. W. Lamb, Area-preserving dynamics that is not reversible, Physica A 228 (1996) 344–365.

    Article  MathSciNet  Google Scholar 

  17. J. S. W. Lamb and G. R. W. Quispel, Reversing k-symmetries in dynamical systems, Physica D 73 (1994) 277–304.

    Article  MathSciNet  MATH  Google Scholar 

  18. MacKay R S 1993 Renormalisation in Area-Preserving Maps (World Scientific, Singapore) and references herein.

    Book  MATH  Google Scholar 

  19. MacKay R S and Meiss J D 1987 Hamiltonian Dynamical Systems: A Reprint Selection (Hilger, Bristol).

    MATH  Google Scholar 

  20. Malomed B A and Tribelsky M I 1984 Physica D 14 67.

    Article  MathSciNet  MATH  Google Scholar 

  21. Meyer K R 1970 Trans. Am. Math. Soc. 149 95.

    Article  MATH  Google Scholar 

  22. J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967) 136–176.

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Percival and F. Vivaldi, Physica D 25 (1987) 105–30.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Politi, G. L. Oppo and R. Badii, Coexistence of conservative and dissipative behaviour in reversible dynamical systems, Phys. Rev. A 33 (1986) 4055–4060.

    Article  Google Scholar 

  25. T. Poston and I. N. Stewart, Taylor Expansions and Catastrophes (Pitman, London, 1976).

    MATH  Google Scholar 

  26. Quispel G R W and Capel H W 1989 Phys. Lett. A 142 112.

    Article  MathSciNet  Google Scholar 

  27. G.R.W. Quispel, J.A.G. Roberts and C. J. Thompson, Integrable mappings and soliton equations II, Physica D 34 (1989) 183–192.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. A. G. Roberts, Escaping orbits in trace maps, Physica A 228 (1996) 295–325.

    Article  MathSciNet  Google Scholar 

  29. J. A. G. Roberts and M. Baake, Trace maps as 3D reversible dynamical systems with an invariant, J. Stat. Phys. 74 (1994) 829–888.

    Article  MathSciNet  MATH  Google Scholar 

  30. Roberts JAG and Baake M 1994, The dynamics of trace maps, in: Hamiltonian Mechanics: Integrability and Chaotic Behaviour, ed. J. Seimenis, NATO ASI Series B: Physics (Plenum, New York).

    Google Scholar 

  31. J. A. G. Roberts and H. W. Capel, Area preserving mappings that are not reversible, Phys. Lett. A 162 (1992) 243–248.

    Article  MathSciNet  Google Scholar 

  32. J. A. G. Roberts and H. W. Capel, Irreversibility in conservative dynamics, to be submitted (1996).

    Google Scholar 

  33. J. A. G. Roberts and J. S. W. Lamb, Self-similarity of period-doubling branching in 3-D reversible mappings, Physica D 82 (1995) 317–332.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. A. G. Roberts and G. R. W. Quispel, Chaos and time-reversal symmetry -order and chaos in reversible dynamical systems, Phys. Rep. 216 (1992) 63–177.

    Article  MathSciNet  Google Scholar 

  35. R. G. Sachs, The Physics of Time Reversal, (Univ. of Chicago Press, Boston, 1987).

    Google Scholar 

  36. Sevryuk M B 1986 Reversible systems, Lecture Notes in Mathematics vol. 1211 (Berlin: Springer).

    Google Scholar 

  37. Sevryuk M B 1989 Funkt Anal. Prilozh. 23 116.

    Article  MathSciNet  MATH  Google Scholar 

  38. Turner G S and Quispel G R W 1994 J. Phys. A 27 757.

    Article  MathSciNet  MATH  Google Scholar 

  39. Vanderbauwhede A 1990 SIAM J. Math. Anal. 21(4) 954.

    Google Scholar 

  40. Vanderbauwhede A 1992 Geometry and Analysis in Nonlinear Dynamics, eds. H.Broer and F.Takens (Longman, Harlow) P 97.

    Google Scholar 

  41. Yan J G G 1992 Int. J. Bif. Chaos 2 285.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this paper

Cite this paper

Roberts, J.A.G. (1997). Some Characterisations of Low-dimensional Dynamical Systems with Time-reversal Symmetry. In: Judd, K., Mees, A., Teo, K.L., Vincent, T.L. (eds) Control and Chaos. Mathematical Modelling, vol 8. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2446-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2446-4_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7540-4

  • Online ISBN: 978-1-4612-2446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics