Skip to main content

Attractor Reconstruction and Control Using Interspike Intervals

  • Conference paper
Control and Chaos

Part of the book series: Mathematical Modelling ((MMO,volume 8))

  • 361 Accesses

Abstract

Takens showed in 1981 that dynamical state information can be reconstructed from an experimental time series. Recently it has been shown that the same is true from a series of interspike interval (ISI) measurements. This method of system analysis allows prediction of the spike train from its history. The underlying assumption is that the spike train is generated by an integrate- and-fire model. We show that it is possible to use system reconstruction based on spiking behavior alone to control unstable periodic trajectories of the system in two separate ways: by making small (subthreshold) changes in a system parameter, and by using an on-demand pacing protocol with superthreshold pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ding, C. Grebogi, E. Ott, T. Sauer, J.A. Yorke, Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Physica D 69, 404 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  3. M.C. Mackey, L. Glass, Oscillations and chaos in physiological control systems, Science 197, 287 (1977).

    Article  Google Scholar 

  4. M. Miller, D. Snyder, Random Point Processes in Time and Space. Springer-Verlag, New York (1991). P.A.W. Lewis, ed. Stochastic Point Processes: Statistical Analysis, Theory, and Applications. Wiley-Interscience, New York (1972).

    Google Scholar 

  5. E. Ott, C. Grebogi, E. Ott, Controlling chaos. Phys. Rev. Lett. 64, 1196 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Ott, T. Sauer, J.A. Yorke, Coping with Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Systems. Wiley Interscience, New York, 418 pp. (1994).

    MATH  Google Scholar 

  7. N. Packard, J. Crutchfield, J.D. Farmer, R. Shaw, Geometry from a time series, Phys. Rev. Lett. 45, 712 (1980).

    Article  Google Scholar 

  8. D. Prichard, J. Theiler, Generating surrogate data for time series with several simultaneously measured variables, Phys. Rev. Lett. 73, 951 (1994).

    Article  Google Scholar 

  9. T. Sauer, Reconstruction of dynamical systems from interspike intervals, Phys. Rev. Lett. 72, 3811 (1994).

    Article  Google Scholar 

  10. T. Sauer, J.A. Yorke, and M. Casdagli, Embedology, J. Stat. Phys. 65, 579 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  11. S.J. Schiff, K. Jerger, T. Chang, T. Sauer, P.G. Aitken, Stochastic versus deterministic variability in simple neuronal circuits. II. Hippocampal slice, Biophys. J. 67, 684 (1994).

    Article  Google Scholar 

  12. F. Takens , Detecting strange attractors in turbulence, Lecture Notes in Math. 898, Springer-Verlag (1981).

    Google Scholar 

  13. J. Theiler, S. Eubank, A. Longtin, B. Galdrakian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data, Physica D 58, 77 (1992).

    Article  MATH  Google Scholar 

  14. H. Tuckwell, Introduction to Theoretical Neurobiology, vols 1,2. Cambridge University Press (1988).

    Book  Google Scholar 

  15. Babloyantz, A. 1989. Some remarks on nonlinear data analysis. Pages 51–62 in N.B. Abraham, A.M. Albano, A. Passamante and P.E. Rapp (editors). Measures of Complexity and Chaos. New York, Plenum Press.

    Google Scholar 

  16. MacDonald, G.M., T.W.D. Edwards, K.A. Moser, R. Pienitz, and J.P. Smol. 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243–245.

    Article  Google Scholar 

  17. Schaffer, W. 1984. Stetching and folding in lynx fur returrns: evidence for a strange attractor in nature? The American Naturalist 124: 798–820.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhauser Boston

About this paper

Cite this paper

Sauer, T. (1997). Attractor Reconstruction and Control Using Interspike Intervals. In: Judd, K., Mees, A., Teo, K.L., Vincent, T.L. (eds) Control and Chaos. Mathematical Modelling, vol 8. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2446-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2446-4_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7540-4

  • Online ISBN: 978-1-4612-2446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics