On the Hamiltonian Representation of the Associativity Equations

  • E. V. Ferapontov
  • O. I. Mokhov
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 26)

Abstract

We demonstrate that for an arbitrary number n of primary fields the equations of the associativity can be rewritten in the form of (n — 2) pairwise commuting systems of hydrodynamic type, which appear to be nondiagonalizable but integrable. We propose a natural Hamiltonian representation of the systems under study in the cases n = 3 and n = 4.

Keywords

Soliton Dupin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dubrovin, B., Geometry of 2D topological field theories, preprint SISSA- 89/94/FM, SISSA, Trieste (1994).Google Scholar
  2. [2]
    Mokhov, O.I., Differential equations of associativity in 2D topological field theories and geometry of nondiagonalizable systems of hydrodynamic type, In: Abstracts of Internat. Conference on Integrable Systems “Nonlinearity and Integrability: from Mathematics to Physics”, February 21-24, 1995, Montpellier, France (1995).Google Scholar
  3. [3]
    Mokhov, O.I., Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations, AMS Translations, series 2 Vol. 170 Topics in topology and mathematical physics, S.P. Novikov, ed., (1995); hep-th/9503076.Google Scholar
  4. [4]
    Tsarev, S.P., Geometry of Hamiltonian systems of hydrodynamic type, The generalized hodograph method, Izvestiya Akad. Nauk SSSR, Ser. mat. 54 (5) (1990), 1048 - 1068.Google Scholar
  5. [5]
    Dubrovin, B.A. and Novikov, S.P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Uspekhi Mat Nauk 44 (6) (1989), 29 - 98.MathSciNetGoogle Scholar
  6. [6]
    Ferapontov, E.V., On integrability of 3 x 3 semi-Hamiltonian hydrodynamic type systems which do not possess Riemann invariants, Physica D 63 (1993), 50 - 70.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Ferapontov, E.V., On the matrix Hopf equation and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Phys. Lett. A 179 (1993), 391 - 397.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Ferapontov, E.V., Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type which do not possess Riemann invariants, Diff. Geometry and its Appl. 5 (1995), 121 - 152.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Ferapontov, E.V., Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Teor. and Mat. Physics 99 (2) (1994), 257 - 262.MathSciNetGoogle Scholar
  10. [10]
    Witten, E., On the structure of the topological phase of two-dimensional gravity, Nucl. Physics B 340 (1990), 281 - 332.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Dijkgraaf, R., Verlinde, H., and Verlinde, E., Topological string in gravity, Nucl. Physics B 352 (1991), 59-86.Google Scholar
  12. [12]
    Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surveys in Diff. Geometry 1 (1991), 243 - 310.MathSciNetGoogle Scholar
  13. [13]
    Dubrovin, B., Integrable systems in topological field theory, Nucl. Physics B 379 (1992), 627 - 689.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Mokhov, O.I. and Ferapontov, E.V., On the nonlocal Hamiltonian operators of hydrodynamic type, connected with constant curvature metrics, Uspekhi Mat. Nauk 45 (3) (1990), 191 - 192.MathSciNetGoogle Scholar
  15. [15]
    Ferapontov, E.V., Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type, Funkts. Analiz i ego Prilozh. 25 (3) (1991), 37 - 49.MathSciNetGoogle Scholar
  16. [16]
    Mokhov, O.I., Hamiltonian systems of hydrodynamic type and constant curvature metrics, Phys. Letters A 166 (3-4) (1992), 215 - 216.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Mokhov, O.I. and Nutku, Y., Bianchi transformation between the real hyperbolic Monge-Ampere equation and the Born-Infeld equation, Letters in Math. Phys. 32 (2) (1994), 121 - 123.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • E. V. Ferapontov
    • 1
  • O. I. Mokhov
    • 2
  1. 1.Inst. for Math. ModellingMoscowRussia
  2. 2.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations