Skip to main content

On the r-Matrix Structure of the Neumann System and its Discretizations

  • Chapter
Algebraic Aspects of Integrable Systems

Abstract

A novel impetus to the construction of integrable discretisations of given integrable continuous-time hamiltonian systems has been given in recent years by a number of relevant findings: we mention the successful application to differential-difference integrable hierarchies of the stationary flow or restricted flow approach [1], the results obtained toward the identification of integrable mappings of the standard type [2], the discovery of Backlund transformations for Calogero-Moser and Rujsenaars systems [3], including relativistic Toda [4], and finally the construction of non-autonomous mappings which are endowed with a proper discrete analog of the Painleve’ property [5]. Of course, time-discretisation is a highly non-unique procedure, even if we restrict considerations to integrability-preserving difference schemes. One may just ask to get an integrable Poisson map such that the discrete dynamics it describes goes into the continuous one in a suitable asymptotic limit, together with integrals of motion and Poisson structure, or require that Poisson structure and integrals of motion be exactly preserved by the discretisation. Stationary or restricted flow technique typically lead to discretisation of the former type, while Backlund transformations provide an example of the latter one. In the present paper, we compare two integrable discretisations of the Neumann system, both belonging to the first family; indeed, one of them is obtained by applying the restricted flow technique to the Toda lattice hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.R.W. Quispel, J.A.Roberts, C.J.Thompson. - Physica D, 1990, v.34, p. 183-192. M.Bruschi, O.Ragnisco, P.Santini, and G.Tu. Integrable symplectic maps. - Physica D, 1991, v. 49, p.273-294. O. Ragnisco. A simple method to generate integrable symplectic maps - in: Solitons and chaos, I.Antoniou, F.J.Lambert (Springer, 1991 ), p. 227 - 231;

    Google Scholar 

  2. Yu.B.Suris.-Funct. Anal. Appl. 1989, v. 23, p. 84 - 85

    MathSciNet  Google Scholar 

  3. F. Nijhoff, G.D. Pang. Discrete-time Calogero-Moser model and lattice KP equation.- in: Symmetries and Integrability of Difference Equations, D. Levi, P. Winternitz and L. Vinet, CRM Montreal 1995; F.Nijhoff, O.Ragnisco, V.Kuzsnetsov. Integrable time-discretization of the Rujisenaars-Schneider model -Comm. Math. Phys. (to appear);

    Google Scholar 

  4. Yu. B.Suris. A discrete-time relativistic Toda lattice.- Preprint University of Bremen, Centre for Complex Systems and Visualization, 1995.

    Google Scholar 

  5. B. Grammaticos, A.Ramani. Discrete Painleve equations: coalescences, limits and degeneracies. -Preprint Universite’ de Paris VII, October 1995, solv-int/9510011

    Google Scholar 

  6. C. Neumann. De problemate quodam mechanica, quod ad primam inte- gralium ultraellipticorum classem revocatur. - J. Reine Angew. Math., 1859, v.56, p.46-69.

    Google Scholar 

  7. M. Adler, P. van Moerbecke. Completely integrable systems, Euclidean Lie algebras, and curves. - Adv. Math., 1980, v.38, p.267-317.

    Google Scholar 

  8. J. Moser. Geometry of quadrics and spectral theory, - In: Chern Symposium 1979. Springer, 1981, p. 147-188.

    Google Scholar 

  9. T. Ratiu. The C.Neumann problem as a completely integrable system on an adjoint orbit. - Trans. Amer. Math. Soc., 1981, v.264, P-321- 329.

    Google Scholar 

  10. H. Flashka. Towards an algebro-geometric interpretation of the Neumann problem. - Tohoku Math. J., 1984, v.36, p.407-426.

    Article  MathSciNet  Google Scholar 

  11. M. Adams, J.Harnad, and E.Previato. Isospectral Hamiltonian flows in finite and infinite dimensions. - Commun. Math. Phys., 1988, v. 117, p. 451-500.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Avan, M.Talon. Integrability and Poisson brackets for the Neumann- Moser-Uhlenbeck model. - Int. J. Mod. Phys. A, 1990, v.5, p.4477- 4485; Alternative Lax structures for the classical and quantum Neumann model. - Phys. Lett. B, 1991, v. 268, p. 209-216.

    Google Scholar 

  13. A.G. Reyman, M.A.Semenov-Tian-Shansky. Group-theoretical method in the theory of finite-dimensional integrable systems. - In: Encyclopaedia of Math. Sciences, V.16, Dynamical systems VII. Springer, 1993.

    Google Scholar 

  14. Yu.B. Suris. On the bi-Hamiltonian structure of Toda and relativistic Toda lattices. - Physics Letters A, 1993, v. 180, p.419-429.

    Article  MathSciNet  Google Scholar 

  15. A discrete Neumann system. - Physics Lett. A, 1992, v. 167, p. 165- 171; Dynamical r-matrices for integrable maps.- Physics Lett. A, 1995, v.198, p. 295-305; O.Ragnisco, S.Rauch-Wojciechowski. Integrable maps for the Gamier and for the Neumann systems. - Preprint Linkoping Univ., 1994; O.Ragnisco, C.Cao, Y.Wu. On the relation of the stationary Toda equation and the symplectic maps. - J. Phys. A: Math, and Gen., 1995, v.28, p.573-588.

    Google Scholar 

  16. A.P. Veselov. Integrable systems with discrete time and difference operators. - Funct. Anal. Appl, 1988, v.22, p. 1-13; J.Moser, A.P.Veselov. Discrete versions of some classical integrable systems and factorization of matrix polynomials. - Commun. Math. Phys., 1991, v.139, p.217-243; P.Deift, L.-Ch. Li, C.Tomei. Loop groups, discrete versions of some classical integrable systems, and rank 2 extensions. - Mem. Amer. Math. Soc., 1992, No 479.

    Google Scholar 

  17. Yu.B. Suris. A discrete-time Gamier system. - Physics Letters A, 1994, v.189, p. 281-289; A family of integrable standard-like maps related to symmetric spaces. - Physics Letters A, 1994, v. 192, p.9-16; Discrete-time analogs of some nonlinear oscillators in an inverse- square potential. - J. Phys. A: Math, and Gen., 1994, v.27, p.8161-8169

    Article  MathSciNet  MATH  Google Scholar 

  18. E.K. Sklyanin. Separation of variables in the classical integrable SL(3) magnetic chain. - Commun. Math. Phys., 1992, v. 142, p. 123-132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Ragnisco, O., Suris, Y.B. (1997). On the r-Matrix Structure of the Neumann System and its Discretizations. In: Fokas, A.S., Gelfand, I.M. (eds) Algebraic Aspects of Integrable Systems. Progress in Nonlinear Differential Equations and Their Applications, vol 26. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2434-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2434-1_14

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7535-0

  • Online ISBN: 978-1-4612-2434-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics