The Lowest Eigenvalue for Congruence Groups

  • Henryk Iwaniec
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 20)


Let L 2 (Γ\ℍ) be the space of square-integrable automorphic functions with respect to a group Γ ⊂ SL 2 (ℝ) acting discontinuously on the hyperbolic plane ℍ such that the quotient space Γ\ℍ has finite volume. The Laplace-Beltrami operator on L 2 (Γ\ℍ) has a discrete spectrum λ0 = 0 < λ1 ≤ λ2 ≤ … and a continuous spectrum [1/4, ∞). The eigenpacket of con¬tinuous spectrum consists of Eisenstein series E a (z, s) on the line Re s = 1/2 and the eigenfunctions of the discrete spectrum are Maass cusp forms together with a finite number of residues of E a (z, s) at poles in the segment of 1/2 < s ≤ 1. If Γ is a congruence group the only pole of Eisenstein series is at s = 1 which yields a constant eigenfunction for eigenvalue λ0 = 0, the remaining subspace of discrete spectrum is cuspidal and infinite dimensional.


Convolution Summing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DBHI]
    D. Bump, W. Duke, J. Hoffstein and H. Iwaniec,An estimate for the Hecke eigenvalues of Maass forms, Inter.Math.Res.Notices 4 (1992), 75 – 81.MathSciNetCrossRefGoogle Scholar
  2. [DI]
    J.M. Deshouillers and H. Iwaniec,Kloosterman sums and Fourier coefficients of cusp forms, Invent.Math. 70 (1982), 219 – 288.MathSciNetMATHCrossRefGoogle Scholar
  3. [DI 1–3]
    W. Duke and H. Iwaniec,Estimates for coefficientsof L-functions, I (Montreal 1989 ), II (Amalfi 1992), III (Paris 1990 ).Google Scholar
  4. [GJ]
    S. Gelbart and H. Jacquet,A relation between automorphic representationsof GL(2) and GL(3), Ann.Sci.Ecole Norm.Sup. 4e serie 11 (1978), 471 – 552.MathSciNetMATHGoogle Scholar
  5. [I1]
    H. Iwaniec,Selberg’s lower bound of the first eigenvalue for congruence groupsy in Number Theory, Trace Formulas and Discrete Groups, Academic Press (1989), San Diego, 371–375.Google Scholar
  6. [I2]
    H. Iwaniec,Small eigenvalues of Laplacian forTQ(AT), Acta Arith. 56 (1990), 65 – 82.MathSciNetMATHGoogle Scholar
  7. [LRS]
    W. Luo, Z. Rudnick and P. Sarnak,On Selbergfs eigenvalue conjecture„Geom. Funct. Anal. 5 (1995), 387 – 401.MathSciNetMATHCrossRefGoogle Scholar
  8. [Se]
    A. Selberg,On the estimation of Fourier coefficients of modular forms, AMS. Proc.Symp. Pure Math. VII (1965), 1 – 15.MathSciNetGoogle Scholar
  9. [Sh]
    G. Shimura,On the holomorphy of certain Dirichlet series, Proc. London Math.Soc.(3) 31 (1975), 79 – 98.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • Henryk Iwaniec
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations