Skip to main content

Homogeneous Riemannian Manifolds Whose Geodesies Are Orbits

  • Chapter
Topics in Geometry

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 20))

Abstract

Let M be a homogeneous Riemannian manifold and G the isometry group of M. Then M can be viewed as a coset space G/H with a left-invariant Riemannian metric. M is said to be a g. o. manifold if every geodesic in M is an orbit of a one-parameter subgroup of G. In [KV1], O. Kowalski and L. Vanhecke showed that every g. o. manifold is a D’Atri space; i. e. the local geodesic symmetries are volume preserving up to sign. (See the survey article by Kowalski, Prufer and Vanhecke in this volume for a discussion of D’Atri spaces and additional comments about g. o. manifolds.) The simplest Riemannian homogeneous spaces are the naturally reductive manifolds; these form a subclass of the g. o. manifolds. The definition of naturally reductive (see §1) involves a purely algebraic condition on the isometry group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. L. Besse,Einstein Manifolds, Springer Verlag, Berlin, 1978.

    Google Scholar 

  2. J.E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups,Mem. Amer. Math. Soc.18, No. 215 (1979).

    Google Scholar 

  3. C. S. Gordon, Riemannian isometry groups containing transitive re¬ductive subgroups,Math. Ann.248 (1980), 185 – 192.

    Article  MathSciNet  MATH  Google Scholar 

  4. Naturally reductive homogeneous Riemannian manifolds,Can. J. Math.37 (1985), 467 – 487.

    Google Scholar 

  5. Isospectral closed Riemannian manifolds which are not lo¬cally isometric,J. Diff. Geom.37 (1993), 639 – 649.

    Google Scholar 

  6. C. S. Gordon and E. N. Wilson, The fine structure of transitive Riemannian isometry groups,Trans. Amer. Math. Soc.289 (1985), 367 - 380.

    Article  MathSciNet  MATH  Google Scholar 

  7. Continuous families of isospectral Riemannian manifoldswhich are not locally isometric, preprint.

    Google Scholar 

  8. C. S. Gordon and W. Ziller, Naturally reductive metrics of nonposi¬tive Ricci curvature,Proc. Amer. Math. Soc.91 (1984), 287 – 290.

    Google Scholar 

  9. A. Kaplan, On the geometry of groups of Heisenberg type,Bull. London Math. Soc.15 (1983), 35 – 42.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Kowalski and L. Vanhecke, A generalization of a theorem on nat¬urally reductive homeogeneous spaces,Proc. Amer. Math. Soc.91, (1984), 433 – 435.

    Google Scholar 

  11. Riemannian manifolds with homogeneous geodesies,Boll.Un. Math. Ital. B(7) 5 (1991), 189 – 246.

    Google Scholar 

  12. J. Milnor, Curvatures of left-invariant metrics on Lie groups,Adv. in Math.21 (1976), 293 – 329.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Riehm, Explicit spin representations and Lie algebras of Heisen¬berg type,J. London Math. Soc.29 (1984), 49 – 62.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. N. Wilson, Isometry groups on homogeneous nilmanifolds,Geom. Dedicata12 (1982), 337 – 346.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Gordon, C.S. (1996). Homogeneous Riemannian Manifolds Whose Geodesies Are Orbits. In: Gindikin, S. (eds) Topics in Geometry. Progress in Nonlinear Differential Equations and Their Applications, vol 20. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2432-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2432-7_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7534-3

  • Online ISBN: 978-1-4612-2432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics