A statistical approach to ocean model testing and tuning

  • Claude Frankignoul
Part of the Progress in Probability book series (PRPR, volume 39)

Abstract

For many purposes such as the forecasting of oceanic conditions or the prediction of climate changes, it is important to have realistic models of the ocean, that is models which are able to reproduce sufficiently well the main features of interest, and their time variability. This is particularly critical in the design of coupled ocean-atmosphere models where model errors are generally exacerbated by the coupling, so that artificial “flux-corrections” (Sausen et al, 1988) are often used to prevent a drift toward unreasonable climate conditions, even though they may distort the dynamics. Although more complex models should represent reality more correctly than simpler ones, they do not necessarily do so, as illustrated by the El Niño-Southern Oscillation (ENSO) phenomenon where simple ocean-atmosphere models have so far provided forecasts as good as general circulation models (GCMs), in part because of the drift of the latter (Latif et al, 1993). Provided models are consistent with known physics within the tolerance allowed by the approximations made, model adequacy should thus be judged by the ability at reproducing the relevant observations.

Keywords

Convection Covariance Assimilation Cane Sonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Allaart, M.A.F. and A. Kattenberg, 1990: A primitive equation model for the equatorial Pacific. Technical Report TR-124, KNMI.Google Scholar
  2. [2]
    Blanke, B., and P. Delecluse, 1993: Low frequency variability of the tropical Atlantic ocean simulated by a general circulation model with mixed layer physics. J. Phys. Oceanogr., 23, 1363–1388.CrossRefGoogle Scholar
  3. [3]
    Blumenthal, M.B. and M.A. Cane, 1989: Accounting for parameter uncertainties in model verification: an illustration with tropical sea surface temperature. J. Phys. Oceanogr., 19, 815–830.CrossRefGoogle Scholar
  4. [4]
    Braconnot, P., and C. Frankignoul, 1993: Testing model simulations of the thermocline depth variability in the tropical Atlantic from 1982 through 1984. J. Phys. Oceanogr., 23, 626–647.CrossRefGoogle Scholar
  5. [5]
    Braconnot, P. and C. Frankignoul, 1994: On the ability of the LODYC GCM at simulating the thermocline depth variability in the equatorial Atlantic. Climate Dynamics, 9, 221–234.CrossRefGoogle Scholar
  6. [6]
    Cane, M.A., 1984: Modeling sea level during El Niño. J. Phys. Oceanogr., 14, 1864–1874.CrossRefGoogle Scholar
  7. [7]
    Février, S., J. Sirven and C. Frankignoul, 1995: An intermediate resolution model of the seasonal variability of the tropical Atlantic. The Global Atmosphere-Ocean System, to appear.Google Scholar
  8. [8]
    Flury, B.N., 1989: Common Principal Components and Related Multivariate Models. Wiley and Sons.Google Scholar
  9. [9]
    Frankignoul, C., 1995: Statistical analysis of GCM output. In Analysis of Climate Variability. Applications of Statistical Techniques. H. von Storch and A. Navarra, Ed., Springer Verlag, 139–152.Google Scholar
  10. [10]
    Frankignoul, C., C. Duchêne and M. Cane, 1989: A statistical approach to testing equatorial ocean models with observed data. J. Phys. Oceanogr., 19, 1191–1208.CrossRefGoogle Scholar
  11. [11]
    Frankignoul, C., S. Février, N. Sennéchael, J. Verbeek and P. Braconnot, 1995: An intercomparison between four tropical ocean models. Part 1: Thermocline variability. Tellus, 47A, 351–364.Google Scholar
  12. [12]
    Hasselmann, K., 1979: On the signal-to-noise problem in atmospheric response studies. In Meteorology of the Tropical Oceans, D.B. Shaw, Ed., Roy. Meteor. Soc., 251–259.Google Scholar
  13. [13]
    Latif, M., A. Steri, E. Maier-Reimer, and M.M. Junge, 1993: Structure and predictability of the El Niño/ Southern Oscillation phenomenon in a coupled ocean-atmosphere general circulation model. J. Clim., 6, 700–708.CrossRefGoogle Scholar
  14. [14]
    Livezey, R.E., 1995: Field intercomparison. In Analysis of Climate Variability. Applications of Statistical Techniques. H. von Storch and A. Navarra, Ed., Springer Verlag, 159–175.Google Scholar
  15. [15]
    Livezey, R.E. and W.Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 11, 46–59.CrossRefGoogle Scholar
  16. [16]
    Morrison, D.F., 1976: Multivariate Statistical Methods. McGraw-Hill.Google Scholar
  17. [17]
    Stuart, A. and Ord, J.K., 1991: Kendall’s Advanced Theory of Statistics. 5th edition. Edward Arnold.Google Scholar
  18. [18]
    Reverdin, G., P. Delecluse, C. Levi, A. Morlière, and J. M. Verstraete, 1991: The near surface tropical Atlantic in 1982–1984. Results from a numerical simulation and data analysis. Progress in Oceanogr., 27, 273–340.CrossRefGoogle Scholar
  19. [19]
    Sausen, R., K. Bartheis and K. Hasselmann, 1988: Coupled ocean-atmosphere models with flux correction. Climate Dynamics, 2, 154–163.CrossRefGoogle Scholar
  20. [20]
    Seager, R., S.E. Zebiak and M.A. Cane, 1988: A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res., 93, 11,587–11,601.Google Scholar
  21. [21]
    Seber, G.A.F., 1984: Multivariate Observations. Wiley and Sons.Google Scholar
  22. [22]
    Seber, G.A.F. and C.J. Wild, 1989: Nonlinear Regression. Wiley and Sons.Google Scholar
  23. [23]
    Sennéchael, N., C. Frankignoul and M.A. Cane, 1994: An adaptive procedure for tuning a sea surface temperature model. J. Phys. Oceanogr., 24, 2288–2305.CrossRefGoogle Scholar
  24. [24]
    Sennéchael, N., 1994: Optimisation d’un modèle de l’ocan atlantique tropical par méthode inverse adaptative. Thèse de doctorat, Université Pierre et Marie Curie, Paris.Google Scholar
  25. [25]
    Servain, J., J. Picaut and A.J. Busalacchi, 1985: Interannual and seasonal variability of the tropical Atlantic ocean depicted by 16 years of sea surface temperature and wind stress. In Coupled Ocean-atmosphere Models, J.C.J. Nihoul, Ed., Elsevier, 211–237.Google Scholar
  26. [26]
    Tarantola, A. 1987: Inverse problem theory. Elsevier.Google Scholar
  27. [27]
    von Storch, H., 1982: A remark on Chervin-Schneider’s algorithm to test significance. J. Atmos. Sci., 39, 187–189.CrossRefGoogle Scholar
  28. [28]
    Van Huffel, S. and J. Vandewalle, 1991: The Total Least Squares Problem. Frontiers in Applied Mathematics, 9, SIAM, Philadelphia.Google Scholar
  29. [29]
    Yao, Y., 1965: An approximate degrees of freedom solution to the multivariate Behrens-Fisher problem. Biometrika, 52, 139–147.MathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • Claude Frankignoul
    • 1
  1. 1.Laboratoire d’Océanographie Dynamique et de Climatologie Unité mixte de recherche CNRS-ORSTOM-UPMCUniversité Pierre et Marie CurieParisFrance

Personalised recommendations