Skip to main content

Wavefield Representation Using Compact and Directionally Localized Sources

  • Chapter
Computational Wave Propagation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 86))

  • 326 Accesses

Abstract

New representations for compact source regions are developed. The wave field satisfies the homogeneous Helmholtz equation outside of some finite region, and is assumed known on some value of r = constant, possibly infinite. Given this data, we represent the radiated field by an equivalent distribution of sources in complex space. The point sources are located on the complex “sphere” r = ia, with a weighting uniquely defined by the far-field. Each complex point source acts like a Gaussian beam with a well defined directionality. This type of representation offers an alternative to the usual multipole expansion, and may be preferable if the source is highly directional. In the high frequency limit the far-field pattern function is proportional to the associated weighting function for the complex sources. The theory is developed for both 2D and 3D, and numerical examples are presented for a 3D end-fire array.

All thanks to the IMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Wen and M. Breazeale, A diffraction beam field expressed as the superposition of Gaussian beams, J. Acoust. Soc. Am., 83 (1988), pp. 1752–1756.

    Article  Google Scholar 

  2. G. A. Deschamps, Gaussian beam as a bundle of complex rays, Electron. Lett. 7 (1971), pp. 684–685.

    Article  Google Scholar 

  3. V. Červený, M. M. Popov, andI. Pšencík, Computation of wave fields in in-homogeneous media — Gaussian beam approach, Geophys. J. R. Astron. Soc, 70 (1982), pp. 109–128

    MATH  Google Scholar 

  4. M. M. Popov, A new method of computation of wave fields using Gaussian beams, Wave Mot., 4 (1982), pp. 85–97.

    Article  MATH  Google Scholar 

  5. B. S. White, A.N. Norris, A. BaylissandR. Burridge, Some remarks on the Gaussian beam summation method, Geophys. J. R. Astr. Soc, 89 (1987), pp. 579–636.

    Google Scholar 

  6. M. B. Porter and H. P. Bucker, Gaussian beam ray tracing for computing ocean acoustic fields, J. Acoust. Soc. Am., 82 (1987), pp. 1349–1359.

    Article  Google Scholar 

  7. V. Cervený, Gaussian beam synthetic seismograms, J. Geophys., 58 (1985), pp. 44–72.

    Google Scholar 

  8. V.M. Babich and M. M. Popov, Gaussian summation method (review), Radio-phys. Quant. Electr., 32 (1989), pp. 1063–1081.

    Article  MathSciNet  Google Scholar 

  9. M. J. Bastiaans, Gabor’s expansion of a signal into Gaussian elementary signals, Proc. IEEE, 68 (1980), pp. 538–539.

    Article  Google Scholar 

  10. L. B. Felsen, J. M. Klosner, I. T. Lu, andZ. Grossfeld, Source field modeling by self-consistent Gaussian beam superposition, J. Acoust. Soc. Am., 89 (1990), pp. 63–72.

    Article  Google Scholar 

  11. L. B. Felsen, Complex-point-source solutions of the field equations and their relation to the propagation and scattering of Gaussian beams, Symp. Math. Instituta di alta Matematica, 18 (1976), pp. 39–56.

    MathSciNet  Google Scholar 

  12. M. Couture and P.A. Belanger, From Gaussian beam to complex-source-pointspherical wave, Phys. Rev. A 24 (1981), pp. 355–359.

    Article  Google Scholar 

  13. L. B. Felsen, Geometrical theory of diffraction, evanescent waves and complexrays, Geophys. J. R. Astron. Soc, 79 (1982), pp. 77–88.

    Google Scholar 

  14. H.-C. Choi and J. G. Harris, Scattering of an ultrasonic beam from a curvedinterface, Wave Motion, 11 (1989), pp. 383–406.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Zeroug and L. B. Felsen, Nonspecular reflection of two-and three-dimensional acoustic beams from fiuid-immersed plane layered elastic structures, J. Acoust. Soc. Am., 95 (1994), pp. 3075–3089.

    Article  Google Scholar 

  16. A. N. Norris, Complex point source representation of real point sources and the Gaussian beam summation method, J. Opt. Soc. Am., A3 (1986), pp. 2005–2010.

    Article  Google Scholar 

  17. N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986.

    Google Scholar 

  18. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, New York, McGraw-Hill, 1953.

    MATH  Google Scholar 

  19. J. E. Hansen, Ed., J. Hald, F. Jensen, andF. H. Larsen, Spherical Near-FieldAntenna Measurements, Peter Peregrinus, London, 1988.

    Google Scholar 

  20. T. B. Hansen, Formulation of spherical near-field scanning in the time domain, To appear in this IMA Proceedings, 1995.

    Google Scholar 

  21. E. Heyman, Complex source pulsed beam representation of transient radiation, Wave Motion, 11 (1989), pp. 337–349.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Norris, A.N., Hansen, T.B. (1997). Wavefield Representation Using Compact and Directionally Localized Sources. In: Engquist, B., Kriegsmann, G.A. (eds) Computational Wave Propagation. The IMA Volumes in Mathematics and its Applications, vol 86. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2422-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2422-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7531-2

  • Online ISBN: 978-1-4612-2422-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics