Advertisement

Stress-Deformation Relations for Anisotropic Solids

  • G. F. Smith
  • R. S. Rivlin

Abstract

We consider a body of material to be subjected to a deformation in which a point of the material initially at X i in a rectangular Cartesian coordinate system x i moves to x i in the same coordinate, system. In the theory of finite elasticity it is assumed that there exists a strain-energy function W which is a polynomial function of the displacement gradients ∂x i /∂X j only.

Keywords

Symmetry Transformation Order Tensor Displacement Gradient Monoclinic System Rigid Body Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green, A. E., & R. S. Rivilin: Arch. Rational Mech. Anal. 1, 1–21 (1957).CrossRefGoogle Scholar
  2. Smith, G. F., & R. S. Rivlin: Trans. Amer. Math. Soc. (in the press)Google Scholar
  3. Weyl, H.: The Classical Groups, their invariants and representations. Princeton, N. J.: Princeton Univ. Press 1946Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • G. F. Smith
    • 1
  • R. S. Rivlin
    • 1
  1. 1.Brown UniversityProvidenceUSA

Personalised recommendations