Statistical Assessment of Atmospheric Ozone Data for Depletion

  • Gregory C. Reinsel
  • George C. Tiao


A seasonal trend analysis of Dobson station total ozone data from a network of 56 stations has been performed using data from 1964 through 1991. Random effects models for the individual station seasonal trend estimates, to allow for individual station and regional trend variations, are used to combine individual station trend estimates to obtain overall trend estimates in ozone for different seasons of the year as a function of latitude. The trend results indicate significant negative trends in ozone since 1970, of the order of -2.5% per decade, during the winter and spring seasons in the higher northern latitudes (40°N–65°N). A similar seasonal trend analysis over the more recent shorter time period November 1978 through 1991 is also performed using total ozone data from the TOMS satellite experiment, and results are compared with trend analysis of the Dobson ground station data for the comparable time period.


Seasonal Trend Total Ozone Stratospheric Ozone Data Period High Northern Latitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bojkov, R. D., The 1983 and 1985 anomalies in ozone distribution in perspective, Mon. Weath. Rev., 775, 2187–2201, 1987CrossRefGoogle Scholar
  2. Bojkov, R., L. Bishop, W. J. Hill, G. C. Reinsel, and G. C. Tiao, A statistical trend analysis of revised Dobson total ozone data over the northern hemisphere, J. Geophys. Res., 95, 9785–9807, 1990CrossRefGoogle Scholar
  3. Cicerone, R. J., R. S. Stolarski, and S. Walters, Stratospheric ozone destruction by man-made chlorofluoromethanes, Science, 185, 1165–1167, 1974CrossRefGoogle Scholar
  4. Herman, J. R., R. Hudson, R. McPeters, R. Stolarski, Z. Ahmad, X.-Y. Gu, S. Taylor, and C. Wellemeyer, A new self-calibration method applied to TOMS and SBUV backscattered ultraviolet data to determine long-term global ozone change, J. Geophys. Res., 96, 7531–7545, 1991CrossRefGoogle Scholar
  5. Laird, N. M., and J. H. Ware, Random-effects models for longitudinal data, Biometrics, 38, 963–974, 1982CrossRefMATHGoogle Scholar
  6. Mateer, C. L., D. F. Heath, and A. J. Krueger, Estimation of total ozone from satellite measurements of backscatter ultraviolet earth radiance, J. Atmos. Sci, 28, 1307–1311, 1971CrossRefGoogle Scholar
  7. McCormick, M. P., R. E. Veiga, and W. P. Chu, Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data, Geophys. Res. Lett., 19, 269–272, 1992CrossRefGoogle Scholar
  8. Molina, M. J., and F. S. Rowland, Stratospheric sink for chlorofluoromethanes: Chlorine atom catalyzed destruction of ozone, Nature, 249, 810–812, 1974CrossRefGoogle Scholar
  9. Reinsel, G. C., G. C. Tiao, A. J. Miller, D. J. Wuebbles, P. S. Connell, C. L. Mateer, and J. J. DeLuisi, Statistical analysis of total ozone and stratospheric Umkehr data for trends and solar cycle relationship, J. Geophys. Res., 92, 2201–2209, 1987CrossRefGoogle Scholar
  10. Reinsel, G. C., and G. C. Tiao, Impact of chlorofluoromethanes on stratospheric ozone: A statistical analysis of ozone data for trends, J. Amer. Statist. Assoc., 82, 20–30, 1987Google Scholar
  11. Reinsel, G. C., G. C. Tiao, D. J. Wuebbles, J. B. Kerr, A. J. Miller, R. M. Nagatani, L. Bishop, and L. H. Ying, Seasonal trend analysis of published ground-based and TOMS total ozone data through 1991, J. Geophys. Res., 99, 5449–5464, 1994CrossRefGoogle Scholar
  12. Reinsel, G. C., and M. A. Wincek, Asymptotic distribution of parameter estimators for non- consecutively observed time series, Biometrika, 74, 115–124, 1987CrossRefMATHMathSciNetGoogle Scholar
  13. Stolarski, R. S., Fluorocarbons and stratospheric ozone: a review of current knowledge, Amer. Statist., 36, 303–311, 1982Google Scholar
  14. Stolarski, R. S., P. Bloomfleld, and R. D. McPeters, Total ozone trends deduced from Nimbus 7 TOMS data, Geophys. Res. Lett., 18, 1015–1018, 1991CrossRefGoogle Scholar
  15. Stolarski, R., R. Bojkov, L. Bishop, C. Zerefos, J. Staehelin, and J. Zawodny, Measured trends in stratospheric ozone, Science, 256, 342–349, 1992CrossRefGoogle Scholar
  16. Stolarski, R. S., and R. J. Cicerone, Stratospheric chlorine: A possible sink for ozone, Can. J. Chem., 52, 1610–1615, 1974CrossRefGoogle Scholar
  17. World Meteorological Organization, Atmospheric ozone 1985: Assessment of our understanding of the processes controlling its present distribution and change, Global Ozone Res. and Monit. Proj., Rep. 16, Geneva, 1985Google Scholar
  18. Wuebbles, D. J., F. M. Luther, and J. E. Penner, Effect of coupled anthropogenic perturbations on stratospheric ozone, J. Geophys. Res., 88, 1444–1456, 1983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Gregory C. Reinsel
    • 1
  • George C. Tiao
    • 2
  1. 1.University of Wisconsin-MadisonUSA
  2. 2.University of ChicagoUSA

Personalised recommendations