Skip to main content

Recent Developments in Analysis of Time Series with Infinite Variance: A Review

  • Conference paper
Athens Conference on Applied Probability and Time Series Analysis

Part of the book series: Lecture Notes in Statistics ((LNS,volume 115))

Abstract

The class of linear stable processes is considered and a review of the literature focusing on the behaviour of the standard techniques for model selection, spectral analysis and parameter estimation for this class of processes is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory,B. N. Petrov and F. Csaki, editors, pages 267–281. Akademia Kiado.

    Google Scholar 

  • Beamish, N. and Priestley, M. B. (1981). A study of autoregressive and window spectral estimation. Applied Statistics, 30, 41–58.

    Article  MATH  Google Scholar 

  • Bhansali, R. J. (1983). Estimation of the order of a moving average model from autoregressive and window estimates of the inverse correlation function. J. Time Series Anal., 4, 137–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhansali, R. J. (1984). Order determination for processes with infinite variance. In Robust and Nonlinear Time Series Analysis,J. Franke, W. Hardie, and D. Martin, editors, pages 17–25. Springer Verlag.

    Google Scholar 

  • Bhansali, R. J. (1988). Consistent order determination for processes with infinite variance. J. Royal Statist. Soc., B, 50, 46–60.

    MathSciNet  MATH  Google Scholar 

  • Bhansali, R. J. (1993a). Estimation of the impulse response coefficients of a linear process with infinite variance. J. Mutt. Anal., 45, 274–290.

    MathSciNet  MATH  Google Scholar 

  • Bhansali, R. J. (1993b). Order selection for linear time series models: a review. In Developments in Time Series Analysis,T. S. Rao, editor, pages 50–66. Chapman & Hall.

    Google Scholar 

  • Bhansali, R. J. (1995). Robustness of the autoregressive spectral estimate for linear processes with infinite variance. J. Time Series Analysis. to appear.

    Google Scholar 

  • Bhansali, R. J. and Downham, D. Y. (1977). Some properties of the order of an autoregressive model selected by a generalization of Akaike’s FPE criterion. Biometrika, 64, 547–551.

    MathSciNet  MATH  Google Scholar 

  • Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. Holden Day.

    Google Scholar 

  • Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer Verlag, 2nd edition.

    Google Scholar 

  • Cambanis, S. and Soltani, A. R. (1984). Prediction of stable processes: spectral and moving average representations. Z. Wahrscheinlichkeits theorie, 66, 593–612.

    Article  MathSciNet  MATH  Google Scholar 

  • Cline, D. B. H. and Brockwell, P. J. (1985). Linear prediction of ARMA processes with infinite variance. Stochastic Proc. and Appl., 19, 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R. (1966). The null distribution of the first serial correlation coefficient. Biometrika, 53, 623–626.

    MathSciNet  Google Scholar 

  • Davis, R. and Resnick, S. (1986). Limit theory for the sample covariance and correlation functions of moving averages.

    Google Scholar 

  • Du Mouchel, W. H. (1983). Estimating the stable index a in order to measure tail thickness: A critique. Ann. Statist., 14, 533–558. Ann. Statist., 14, 533–538.

    Google Scholar 

  • Findley, D. F. (1985). On the unbiasedness property of AIC for exact or approximating linear stochastic time series models. J. Time Series Anal., 6, 229–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Granger, C. W. J. and Orr, D. (1972). “Infinite Variance” and research strategy in time series analysis. J. Amer. Statist. Assoc., 67, 273–285.

    Article  Google Scholar 

  • Hannan, E. J. and Kanter, M. (1974). Autoregressive processes with infinite variance. J. Appl. Prob., 6, 768–783.

    Article  Google Scholar 

  • Harvey, A. C. (1993). Time Series Models. Harvester Wheatsheaf, 2nd edition.

    Google Scholar 

  • Kanter, M. (1979). Lower bounds for prediction error in moving average processes. Ann. Prob., 7, 128–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Kanter, M. and Steiger, W. L. (1974). Regression and autoregression with infinite variance. Adv. Appl. Prob., 6, 768–783.

    Article  MathSciNet  MATH  Google Scholar 

  • Kluppelberg, C. and Mikosh, T. (1993). Some limit theory for the normalized periodogram of p-stable moving average processes. Scand. J. Statist. to appear.

    Google Scholar 

  • Mandelbrot, B. (1960). The Pareto-Levy law and the distribution of income. Internat. Eco. Rev., 1, 79–106.

    Article  MATH  Google Scholar 

  • Mikosch, T., Gadrich, T., Kluppelberg, C., and Adler, R. J. (1995). Parameter estimation for ARMA models with infinite variance innovations. Ann. Statist., 23, 305–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Mittnik, S. and Rachev, S. T. (1993). Modeling asset returns with alternative stable distributions. Econometric Reviews, 12, 261–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Nyquist, H. (1980). Recent Studies on L p-Norm Estimation. Ph.D. thesis, University of Umea, Sweden.

    Google Scholar 

  • Rosenfeld, G. (1976). Identification of a time series with infinite variance. Appl. Statist., 25, 147–153.

    Article  Google Scholar 

  • Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman & Hall.

    Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6, 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, W. L. (1983). On positive autoregressive sequences. In Contributions to Statistics: Essays in honour of N. L. Johnson, P. K. Sen, editor, pages 391–405. Amsterdam: North Holland.

    Google Scholar 

  • Tucker, A. L. (1992). A reexamination of finite-and infinite-variance distributions as models of daily stock returns. J. Bus. é1 Eco. Statist., 10, 73–81.

    Article  Google Scholar 

  • Yohai, V. and Maronna, R. (1977). Asymptotic behaviour of least-squares estimates for autoregressive processes with infinite variance. Ann. Statist., 5, 554–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Zelazko, W. (1965). Metric Generalizations of Banach Algebras. Warsaw: Panstwowe Wydawnictwo Naukowe.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Bhansali, R.J. (1996). Recent Developments in Analysis of Time Series with Infinite Variance: A Review. In: Robinson, P.M., Rosenblatt, M. (eds) Athens Conference on Applied Probability and Time Series Analysis. Lecture Notes in Statistics, vol 115. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2412-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2412-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94787-7

  • Online ISBN: 978-1-4612-2412-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics